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Abstract. Real-time video streaming is extensively used in UAVs net-
works forbattlefield surveillance, disaster relief, etc.The available through-
put of the multi-hop networks varies a lot with the movement of UAVs.
To guarantee the video’s quality and continuity, rate adaptation mecha-
nism should be used to choose the appropriate transmission rate accord-
ing to the varying throughput. In this paper, we propose a novel proactive
prediction-based adaptation algorithm to avoid disruptions and provide
high quality for real-time streaming over UAVs networks. We show that
available throughput varies periodically withUAVs’mission-relatedmove-
ment. Then we set a prediction range with the knowledge of periodicity
gained from the measurements of a training. The raw prediction is further
calibratedwith reactive estimation of buffered video time toprecisely guide
the adaptation. Simulation results show that our scheme maintains a con-
tinuous playback with a high quality and significantly shorten the start-up
delay compared with two constant bit-rate schemes.

Keywords: UAVs networks, knowledge-based prediction, rate
adaptation.

1 Introduction

Unmanned Aerial Vehicles(UAVs) networks have been playing increasingly im-
portant roles in many areas such as disaster relief, wide area sensing and bat-
tlefield surveillance [1]. In these scenarios, UAV nodes act as either information
collectors or relays, communicating with each other jointly to deliver the critical
data to home station with cost efficiency.

Real-time video streaming is especially valuable among all the data collected,
because it provides users with explicit and intuitive descriptions of the area
they care for. For example, in tactical networks, one can envision the captured
video to facilitate mission management. Nevertheless, the stringent end-to-end
latency requirement of real-time video is hard to guarantee. In practical, either
video continuity or video quality needs to back off, since the wireless connections
among UAV nodes are bandlimited and time-varying, considering the inevitable
topology changes over time. As video interruptions degrade user experience sig-
nificantly, a key challenge rises that how we could get rid of video freezes and
shorten start-up delay while still guaranteeing high video quality.
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To fulfill this purpose, the bit-rate of video streaming should adapt to the vari-
ation of wireless link quality, which demands for the guidance under throughput
prediction. Existing works typically perform prediction based on reactive mea-
surements, e.g. Round Trip Time(RTT) [2], Segment Fetch Time(SFT) [3] and
simply realtime throughput [4]. For example, [4] predicts the available through-
put1 according to the average throughput achieved in the past several video
segments. Though it does make sense when large TCP traffics steadily occupy
the same path in a stable environment [5], things are quite different in real-time
video streaming scenarios where the achieved throughput is often capped by
video generating rate, so that it cannot predict available throughput explicitly.
Hence, available bandwidth could be underestimated, which is likely to mislead
bit-rate adaption, thus achieving limited video quality. Moreover, the existing
schemes are ill-suited to the frequently variation of multi-hop wireless links that
UAV works on.

In this paper, we propose a novel scheme to perform video rate adaptation
for real-time streaming among UAVs, which enables high utilization of available
throughput and makes use of the periodicity knowledge to overcome the fre-
quently throughput variation. Our scheme involves two components, knowledge-
based prediction and adaptation with calibration, carried out separately in a
training stage and a transmission stage. With a same reconnaissance route, we
show that the two stages experience a similar periodic variation, thus making a
proactive prediction possible. Our major contributions are:

1. We introduce a proactive training to analyze the variation of available
throughput caused by mission-related movement and conclude its period-
icity. A prediction range is set based on the several periods’ measurements
in the training.

2. We propose a method for the estimation of buffered video time, generating
an calibration parameter to perform a reactive tweak on the raw prediction.

3. We design an adaptation algorithm based on the prediction to smoothly
match the available throughput.

To the best of our knowledge, our prediction method is the first to adopt
the periodic throughput variation of UAVs networks to guide video rate adapta-
tion. Moreover, the traditional buffered video time estimation is enhanced in our
adaptation algorithm. Experiments show that our scheme successfully maintains
an uninterrupted playback with a much shorter start-up delay than two constant
bit-rate(CBR) schemes, and achieves a higher video quality.

The rest of the paper is organized as followed: Section 2 describes the relevant
work. Knowledge-based throughput prediction and video rate adaptation algo-
rithm are described in Section 3 and Section 4 respectively. Simulation results
based on ns3 and discussion are presented in Section 5. We conclude the paper
with summary in Section 6.

1 Throughout the paper we use available throughput to refer to the maximum rate a
given flow would achieve at a given point in time.
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2 Related Work

Throughput prediction is vital for video rate adaptation as an essential guid-
ance. In [5], throughput predictors for a broad class of applications are analyzed
and summarized. And they classify TCP throughput prediction techniques into
two categories: Formula-Based (FB) and History-Based (HB). These methods
are extensively used in adaptation algorithm. In [2], [3] and [8], FB prediction
is presented by analyzing measured parameter RTT, SFT and loss rate. In [4]
and [6], HB prediction is proposed to detect fluctuation and take adaptation in
real-time. We argue that both the two categories can be regarded as reactive pre-
diction, because the characteristics demanded by FB and previous information
demanded by HB are all obtained in real-time. Reactive throughput prediction
is often capped by the real-time video’s output rate. Thus the capacity would
be underestimated which misleads the bit-rate adaptation to a lower level than
expected, in other words, video could be transmitted in a higher quality. Our
prediction scheme is performed based on the analysis of UAVs’ mission-related
movement in a training stage before the real-time transmission, which avoids the
influence of video output on throughput prediction.

Haakon et al implement a location-based bandwidth-lookup service for bit-
rate planning in [7]. They measured bandwidth in real environment, and plan
quality adaptation based on the measurement and intermittently collected GPS
positional data. In [9], authors propose a location-based model to predict the
performance of TCP over a varying ground-to-UAV wireless link. Despite the
attractiveness, the estimation process calls for frequently interaction between
base station and mobile node which brings down the good throughput, and
impacts the real-time transmission, especially for the multi-hop transmission in
UAVs networks.

3 Knowledge-Based throughput Prediction

In UAVs networks, a group of mobile nodes jointly communicate with each other
to extend communication range. In practical applications, the UAVs play either
the role of collector or relay to fulfill a mission. Typically, the collector node
would be scheduled to move in a predefined route to obtain acquired data from
the ground. The requisite movement result in significantly variation of the avail-
able throughput. Ideally, the collector would know the throughput’s behavior in
advance to take corresponding adaptation for video bit-rate.

Fig. 1 presents a scenario of earthquake surveillance, in which three UAVs
facilitate a wireless chain network to transmit the collected real-time video back
to the home station. We find that the variation of throughput is periodic with
UAVs’ repeatedly surveillant movement. Hence, the knowledge of periodicity can
be used to benefit the prediction of throughput. A proactive training stage is
added before transmission starts to observe and analyze the variation of available
throughput in a multi-hop UAV link with the collector regularly moves. Note that
the available throughput would experience a similar periodic variation during



Rate Adaptation for Real-Time Streaming over UAVs Networks 81

Fig. 1. The collector UAV repeatedly moves in the reconnaissance route to collect real-
time information from the critical area. The repeatedly surveillance behavior results in
periodic variation of the available throughput provided by the 3-hop-chain network.

video transmission. We introduce a continuous TCP bulk flow from the collector
to home station to monitor the variation of available throughput.

We use time series analysis method to prove the existing and conclude the
variation period. Let TP = {tpi|1 ≤ i ≤ n} be the measured throughput during
the tm long stage, and the sampling interval of throughput is I which equals to
tm/n. Interval I should be appropriately chosen to enable a timely adaptation.
The variation frequencies of throughput is organized as

F = {fi|0 < fi ≤ 1/I, 1 < i ≤ n} (1)

where element fi denotes a variation frequency. Range of fi and i decide that the
variation period is larger than I and no bigger than tm. Using Fourier transform,
the intensity of each frequency component can be denoted as Pi = S2

i +C2
i , where

Si =
n∑

j=1

(tpj − tpm) · sin(2π · kj · fi), (2)

and

Ci =

n∑
j=1

(tpj − tpm) · cos(2π · kj · fi) (3)

tpm denotes the mean value of the measured throughput, and kj = j. The-
oretically, Pi reflects the probability that throughput varies in frequency fi.
Therefore, frequency fp related to the peek intensity value Pmax presents the
maximum probability for measured throughput to vary with.

The period of throughput’s variation, denoted as T , divides the training stage

into N =
⌊
tm/T

⌋
periods, where T equals to 1/fp. Hence, there would be T/I in-

tervals in one period. Based on the division, we calculate the average throughput
and minimum throughput for each interval in one period. We have,

TPavg = {tpavgi |tpavgi =

N∑
j=1

tpi+T ·j

N
, i ∈ [1, T/I)}, (4)

and
TPmin = {tpmin

i |tpmin
i = min

0≤j≤N−1
{tpi+T ·j}, i ∈ [1, T/I)} (5)
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tpavgi and tpmin
i refer to the average and minimum throughput for the i-th in-

terval. During a real-time video transmission, we gain on the average results to
seek high video quality, and gain on the minimum ones to avoid the influence
of unwanted fluctuations. Hence, TPavg and TPmin act as the upper bound and
lower bound of the prediction for one period, respectively.

4 Rate Adaptation Algorithm

In this section, an effective video rate adaptation algorithm is proposed in which
we adapt the bit-rate to appropriate levels based on prediction repeatedly after
a specific interval. By doing this, we aim to (i) minimize the start-up delay while
keeping a continuous video playback and (ii) maximize the quality of video.
Meanwhile, we estimate the buffered video time on sender-side to tweak the raw
prediction results of the training. The flowchart of our adaptation algorithm is
shown in Fig. 2. In the flowchart, we use tad to represent the adaptation interval,
while tpi and tpi+1 denote the predicted throughput for the current and next
interval respectively. It is important to note that tad should be appropriately
chosen to provide timely adaptation and a relatively smooth quality switch is
maintained by taking multi-subsequent-predictions into account at one time.
The adaptation process is explicitly described in the subsequent sections.

Fig. 2. Flowchart of the proposed prediction-based adaptation algorithm

4.1 Buffered Video Time Estimation

As shown in Fig. 2, we estimate the buffered video time at the end of each
adaptation interval tad. The estimation acts as an evaluation for the prediction
performance of the previous interval, and will be provided to the calibration step
as a control parameter. Meanwhile, buffer level(buffered video time) is also used
to indicate whether the playback is continuous or sometimes interrupted.

We propose a novel scheme to estimate the buffered video time on the sender
side instead of collecting the measurement from the receiver side. Overhead on
fetching feed-back information is avoided by doing so. During the continuous
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transmission, we record the sent bytes M s
i for the i-th sending interval of a pe-

riod, and calculate the received bytes of receiver M r
i based on the sequences

of TCP ack segments. The value of M s
i and M r

i have no direct relationship
with each other as throughput varies. If the sending bit-rate is higher than the
current throughput, some resident bytes which represents the bytes un-received
will generate. We denote this part of data as M i

res. And the value of M i
res de-

creases as the adaptation algorithm switch the bit-rate down below the available
throughput, then we have,

M res
i =

{
M s

i −M r
i i = 1

M res
i−1 − (M r

i −M s
i ) i > 1

(6)

At the end of interval i, say t
(e)
i , the sent bytes is no smaller than the received

bytes, so the resident bytes satisfy M res
i ≥ 0.

Assume that tri is the length of video received during adaptation interval tad.
tri is consist of previously and currently received video pieces which have different
bit-rate levels, thus we have,

tri+1 =
M res

i

bri
+

M r
i+1 −M res

i

bri+1
(7)

where bri is the selected video bit-rate during interval i. Then, the reference
buffered time can be estimated as,

tbufi+1 = tbufi − (tad − tri+1) = tsu −
i+1∑
j=1

(tad − trj) (8)

where tsu denotes the start-up accumulation(delay), and tbufi indicates the buffer

level at t
(e)
i . We emphasize that tsu is needed for that tri happens to be smaller

than the consumed length of time during the transmission.

4.2 Throughput Prediction Calibration

Results of the proactive training set the variation range of throughput prediction
as [TPavg, TPmin]. If we simply take TPavg as the available throughput, a high
video quality could be achieved while video freezes would occur. On the contrary,
if we carefully adapt the bit-rate based on TPmin, no interruption occurs but
the video quality stays low. Taking a compromise between the two bounds,
we dynamically estimate the available throughput by introducing the reference
buffer level as a control parameter, and derive the calibrated prediction TPcal =
{tpcali |1 ≤ i ≤ T }.

Specifically, we propose a weighted average method for the calibration,

tpcali = αi · tpavgi + (1 − αi) · tpmin
i (9)

where tpcali is the prediction for the available throughput during the i-th interval
in a period, and αi denotes the related weight. By tweaking parameter αi, the
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value of tpcali is dynamically changed in range [tpmin
i , tpavgi ]. After an adaptation

interval, we increase αi with an increment Δi within the given range unless
the buffered time’s reduction during that interval goes beyond a threshold level
tf . Then we decrease αi with Δi. The increment Δi related to αi equals to
W

/
(tpavgi − tpmin

i ) , where W is assumed to be the gap between two bit-rate
levels. Thus, every adjustment of αi is sufficient for a level switch of bit-rate.

Hence, the available throughput can be predicted as a succession of through-
put period, in which the prediction performance of last period directly influence
current prediction TPcal. The advantage of dynamically calibrating the predic-
tion compared to simply using the average or the minimum version is that it
tweaks the proactive prediction with reactive information to adapt to the actual
situation.

4.3 Bit-Rate Adaptation

Bit-rate adaptation process is performed based on the calibrated throughput
prediction. After each adaptation interval, we refer to TPcal to analyze the re-
lationship between current bit-rate and prediction value for the subsequent in-
terval, which can be categorized into three situations: 1) tpcali+1 > bri + W , 2)
bri < tpcali+1 < bri +W and 3) tpcali+1 < bri.

We set bri+1 = bri in situation 2) because bri remains to be the best appro-
priate level. In situation 1), switch-up operation is expected to promote a high
quality. We propose a selective switch-up scheme to adapt the bit-rate, in which
the predicted available throughput for the next r(r ≥ 2) intervals are all picked
for comparison. The scheme avoids instantaneously switch-up by detecting the
probably throughput spikes. Thus, a switch-up is adopted only if tpcali+2,...,tp

cal
i+r

also satisfies situation 1). And the corresponding bit-rate is set as

bri+1 = max{brlevelj , brlevelj ≤ min{tpcali+1, ..., tp
cal
i+r}} (10)

where brlevelj refers to an accomplishable bit-rate level, and note that tpcali+1 would
be updated at the end of the subsequent adaptation interval. Otherwise, bit-rate
would stay unchanged for the next interval to maintain adaptation stability.
For situation 3), switch-down operation should take place to avoid a buffer re-
duction which may lead to video interruption. In this situation, an aggressive
switch-down is preferred to set the bit-rate level with equation 10. The selective
process is maintained by taking longer prediction into account to benefit smooth
adaptation, while the aggressive action is adopted based on the next interval’s
prediction. We point out that the proposed algorithm avoids adaptation caused
delay by cautiously adapting to the prediction. Thus we only need to calibrate
the prediction when unexpected delay is detected.

The minimum throughput version in period T reflects the available through-
put related to a specific situation, in which some random interference or loss
happen to occur. The algorithm starts by selecting tpmin

1 as the prediction
for available throughput to minimum start-up delay, calibration coefficients are
therefore set as 0. For the subsequent periods, we perform selective switch-up
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and aggressive switch-down as mentioned above to maximize the quality while
maintaining a continuous play.

5 Experimental Evaluation

5.1 Experiment Environment

We implemented our knowledge-based prediction scheme and rate adaptation al-
gorithm in ns3 [10]. A chain topology with 3 nodes was used in the simulations.
The nodes act as the collector UAV, the relay UAV and the home station, re-
spectively. They fell into a line at the beginning of the simulation, and the initial
distance between any two adjacent nodes was set to 100m. During the mission,
the collector moves in a predefined reconnaissance route repeatedly to collect
acquired data from assumptive critical area. We used a log distance propagation
model to simulate the wireless channel. All the nodes were configured to utilize
IEEE 802.11g physical layer.

We performed the simulation process in two stages, that is, a training stage
and a video transmission stage. The two stages last for 200s and 1000s, respec-
tively. The BulkSender application in ns3 was adopted to generate a continuous
TCP flow during the training stage, in which we analyzed the periodicity of
variation and calculated two prediction bounds. Meanwhile, a real-time video
streaming application was designed to carry out during the video transmission
stage, in which our algorithm was evaluated and two CBR schemes were also
performed for comparison.

In the simulation, we set both the sampling interval I and the adaptation
interval tad to 2s, and the start-up time accumulation tsu was set to 5s. Note
that tad was set to its minimum value to enable a timely adaptation. And the
stability is maintained by the adaptation scheme with smooth parameter r set
to 2. Calibration coefficient αi for each interval in a period was initially set to 0.
And we denoted the reduction threshold tf to 0.3s. Finally, the adopted bit-rates
were 500, 550, ... , and 1000kbit/s with the level gap W set as 50.

5.2 Result and Discussion

Firstly, we carried out a simulation to evaluate the efficiency of the proposed
available throughput prediction scheme. Based on the measurements in proactive
training, the prediction scheme firstly analyzes the periodicity, the results is
shown in Fig. 3. As mentioned above, the intensity for frequency fi reflects the
probability that throughput varies with fi. Then we have T = (1/f4) · I = 50s
, where f4 is the frequency related to the maximum intensity. Hence, we can
divide the training stage into 200/T periods. For each interval in a period, we
calculate both its average value and minimum value of all the periods. Fig. 4
shows the throughput prediction results TPavg and TPmin, which set the upper
and lower bound for latter calibration.

Fig. 5 shows the calibrated throughput prediction with a comparison to the
available throughput. During a period, the predicted throughput at a given time
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Fig. 4. The prediction bound TPavg and TPmin in one period

point i is calibrated to a higher value each time tpcali successes to cover the
actual capacity. And it decreases when tpcali > tpai is satisfied, thus causing
the reduction of buffered time to go beyond the threshold tf . Specifically, the
calibration process is performed based on coefficient α, which is periodically
tweaked with the buffered time. We take α12 and α21 related to the 12-th and
21-th interval of the period as examples to present the adjustment of α, the
results are shown in Fig. 6. Their increments Δ12 and Δ21 are 0.3 and 0.2
respectively. We point out that TPcal successfully fits the available throughput
by dynamically tweaking between the two prediction bounds TPavg and TPmin.
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Fig. 5. Calibrated prediction TPcal and available throughput TPa

Fig. 7 shows the adaptation results of our proposed algorithm, where we only
present the first 300s of bit-rate adaptation. During the transmission, adapta-
tion algorithm dynamically choose a bit-rate level below the upper limit set by
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TPcal. Bit-rate is cautiously switched up to achieve high video quality while
maintaining adequate stability by taking next 2 intervals’ prediction into ac-
count. And it is promptly switched down to avoid adaptation caused delay. The
reference buffer level fluctuates as mismatch between available throughput and
bit-rate occurs. A behavior of reduction indicates that video bit-rate exceeds
the current throughput, which causes the length of received video less than the
transmission time. On the other hand, buffer level raises or stays still when
the link capacity successfully covers the current bit-rate, thus the new generated
bytes and the residual bytes are both received to make up the time consumption.
We remark that no buffer underflow occurs, and the minimum buffered time is
around 2.5s.
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Fig. 7. Measured throughput, video bit-rate and buffer level

Fig. 8 and Fig. 9 show the observation of buffer level for two other runs, which
are a high CBR scheme and a low CBR scheme. We set the bit-rate 750kbit/s
for the former and 650kbit/s for the latter, introducing a span of 2 bit-rate
levels. Note that both the actual buffer level and the relative buffer level are
presented in Fig. 8. The relative level is used here to show the length of surplus
video time when the buffer level is above 0, and it reflects the length of video
that have suffered a disruption when the buffer exhausts. We point out that
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buffer underflows happen because it is unable for an CBR scheme to forecast
any variations of available throughput.

Table 1. Average bit-rate and relative delay in 3 schemes

Scheme Average bit-rate(kbit/s) Relative delay(s)

1 789 2.5
2 750 19.5
3 650 1.7

The detailed comparisons between our adaptation algorithm and the CBR
schemes are presented in Table 1, wherein both the average bit-rate and rela-
tive delay are concluded, and scheme 1, 2, 3 refer to the proposed algorithm,
the high CBR scheme and the low CBR scheme, respectively. Average bit-rate
is used because it represents the average quality of the video streaming. And
we use relative delay to represent a specific start-up delay level with which no
interruption would happen during the transmission. It is important to note that
relative delay fairly reflects one’s performance on real-time. As a conversion be-
tween start-up accumulation and minimum buffer level, relative delay can be
calculated as tsu − tbufmin, where tbufmin represents the minimum buffer level expe-
rienced(e.g., 2.53s for scheme 1). Intuitively, the proposed algorithm achieves
a relative delay of 2.5s, almost 8 times shorter than what scheme 2 exhibits,
and promotes an even higher average bit-rate. Compared to scheme 3, scheme
1 brings a rise in bit-rate of almost 3 levels, while maintaining a basically same
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relative delay (only 0.8s larger). As to continuity, neither the proposed algo-
rithm nor the low CBR scheme incurs an underflow, while the high CBR scheme
suffers continuous underflow after around 200s. The proposed algorithm success-
fully maintains a continuous play of real-time video with a high quality, while
introducing the minimum start-up delay.

6 Conclusion

In this paper, we propose a novel throughput prediction method for video bit-
rate adaptation performed during real-time video streaming. The advantage of
the proposed knowledge-based prediction method compared to schemes used
in existing rate adaptation works is that our method is carried out during a
proactive training to get rid of the video generating rate’s throttle on reactive
measurements. And we dynamically calibrate the prediction results with the
reactive control of sender-side buffer level estimation. Moreover, an aggressive
switch-down and selective switch-up scheme is used to avoid interruption, pro-
mote video quality and smooth the adaptation. Simulation results show that the
proposed algorithm efficiently maintains a continuous play of real-time video
with a minimum start-up delay and provides a relatively higher quality.
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