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Abstract. Mobile crowdsensing is a new paradigm that tries to col-
lect a vast amount of data with the rich set of sensors on pervasive
mobile devices. However, the unpredictable intention and various capa-
bilities of device owners expose the application to potential dishonest
and malicious contributions, bringing forth the important issues of data
credibility assurance. Existed works generally attempt to increase data
confidence level with the guide of reputation, which is very likely to be
unavailable in reality. In this work, we propose CLOR, a general scheme
to ensure data credibility for typical mobile crowdsensing application
without requiring reputation knowledge. By integrating data clustering
with logical reasoning, CLOR is able to formally separate false and nor-
mal data, make credibility assessment, and filter out the false ingredient.
Simulation results show that improved data credibility can be achieved
effectively with our scheme.

Keywords: Mobile Crowdsensing; Data Credibility; Clustering Algo-
rithm; Logical Reasoning.

1 Introduction

The past few years have witnessed the massive prevalence of human-carried com-
puting devices equipped with a rich set of powerful embedded sensors. Such ad-
vancements have given rise to a new sensing paradigm, known as mobile crowd-
sensing (MCS) [1], where individuals use their own mobile devices to perfor-
m sensing task, and collect interested physical data for further analysis [2] in
cloud-based platform. So far, a broad spectrum of MCS applications have been
developed, including environment monitoring, city management, network mea-
surement [3], etc.

A major challenge for the adoption of MCS is how to assure the credibility
of collected sensory data [4]. Unlike the specialized sensors used in tradition-
al wireless sensor networks (WSNs), MCS relies on individuals with unknown
trustworthiness and varied capabilities. Generally, other than unintentionally
false data, normal anonymous participants may tend to submit random mea-
surements to get reward with minimal effort [5]. Further, potential malicious
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participants intend to mislead the data analysis process for their own profit by
injecting fabricated data. For instance, leasing agents may submit false low noise
readings regarding a specific region to promote the rental for their houses. An
Internet Service Provider may generate fictitious measurements to degrade its
competitor’s performance evaluation while increasing its own profit. Therefore,
it is critical to design an effective scheme to verify the data in order to derive
reliable conclusion from them.

Typically, previous works have investigated credibility assurance for sensory
data from unreliable sources by either building reputation systems [6][7] or utiliz-
ing false detection [8][9][10] techniques. The former category attempts to evaluate
the trustworthiness of the collected data based on participants’ reputation infor-
mation and related provenance, such as location proximity and real-time perfor-
mance [6][7]. In [8] and [9], spatial-temporal compressive sensing technique and
overall reputation of clusters are applied to detect false ingredient and improve
data credibility. However, these approaches all rely on the prior knowledge of
participants’ reputation information, which may in fact be unavailable due to
anonymity [11]. To address the problem of ”trust without reputation”, some
works attempt to increase data credibility by identifying contributions that fail
to pass location verification as false [12]. Unfortunately, it implicitly ignore a
common unreliable form containing false sensory data with a valid location. Al-
ternatively, in [13], the concept of provenance logic is introduced to evaluate data
trust based on extended Event Calculus and Markov Logic Network. However,
[13] only focus on several special application scenarios that collect data with
finite domain of state (e.g. event happens or not), making it unable to handle
the more common scenarios where numerical sensory data are collected [3].

In this work, we attempt to solve the problem of ”trust without reputa-
tion” for general MCS applications. A Clustering and LOgical Reasoning based
scheme (CLOR) is proposed to ascertain the credibility of multi-dimension nu-
merical sensory data without requiring any prior knowledge from the partici-
pants. Specifically, two characteristics of MCS are exploited to achieve this goal.
First, as crowd-contributed data for one MCS task are spatial correlated, clus-
tering algorithm is performed to formally distinguish false ingredient from the
normal part. Second, co-located events observed within a short period of time are
very likely to share logical relations with the current MCS task, so logical rea-
soning is introduced to assess the credibility of sensory data through identifying
potential logical supports.

The main contributions of our work are three-fold:

1. A novel clustering-and-merging based translation mechanism is presented to
map the numerical sensory measurements to countable discrete levels and
further represent them with First-Order Logic (FOL) predicates;

2. Given pre-defined logical relations between related events and MCS task,
a logical reasoning based module is proposed to assess the credibility of
quantization levels corresponding to sensory data clusters of that task;

3. A general data credibility assurance algorithm is developed by jointly apply-
ing clustering algorithm and logical reasoning to filter out false ingredient
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in the crowd-contributed sensory data, while no reputation information is
required in this process.

The rest of this paper is organized as follows. Section II describes system
model, problem formulation and introduce logical reasoning knowledge. Then
we outline the key components of scheme CLOR, and introduce how CLOR
facilitates better data credibility in section III. In Section IV, simulation results
that indicate the effectiveness of the scheme are provided. Finally, conclusions
are drawn in Section V.

2 Preliminaries

2.1 System Model

We consider a typical MCS architecture as shown in Fig. 1. It consists of a
cloud-based platform and a set of participants U = {u1, ..., uN} that perform
sensing task T at location L. Among the three stages of a MCS application,
data credibility is considered as an crucial part of the utilization stage, and data
falsification threats arise as the crowd participants have various capabilities and
purposes. A sensing task normally specifies multiple modalities of sensory data
to be collected, so we consider that the collected data in MCS application are
multi-dimensional numerical sensor readings (e.g. temperature, noise level).
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Fig. 1. Architecture of typical MCS applications. Network measurement and temper-
ature monitoring are depicted as two illustrative example applications. Two potential
credibility threats are also listed.

During the execution of task T , ui collects a series of measurements with K
different sensor types, where each can be denoted by si(k), where i ∈ [1, N ], and
k ∈ [1,K]. Sensory data are submitted together with location li to the platform
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before time deadline. The contribution from ui forms a tuple in key-value syntax,
denoted as di =< li, si >. By the end of T , the centralized platform will obtain
a data set D = {d1, ..., dN}, based on which some aggregation function f will be
performed to derive statistical conclusion.

Finally, we assume that L refers to an area of interest within certain distance
of L instead of a specific spot as physical measurements are usually spatial cor-
related, and all sensory data are aligned on measurement features. No additional
information of the participants is required.

2.2 Problem Formulation

Data collected from individuals with unknown trustworthiness are unreliable.
The potential erroneous or fabricated ingredient measurements injected in the
collected data would deviate the analysis result from the expected true value.
Here we consider data di as trust if its location component li and sensory mea-
surement component si are both valid. We classify the state space of credibility
of data di into four categories as shown in Table 1, where symbol T (F ) means
the value is true (false). Note that location attestation-based schemes like [12]
try to assure data credibility by picking out data with invalid location in catego-
ry B and category C, ignoring possibly false data in category A, which is more
common in a MCS application especially when malicious intention is considered.
Unlike these schemes, we propose to improve overall credibility through identi-
fying the group of data with invalid measurement (Category A and C) in this
work, we consider data fall in category B to be normal as its value is valid.

Table 1. Space state for validity of typical MCS data

li

si
T F

T Normal data Category A

F Category B Category C

In view of the above-described false data forms, two types of adversary model
are considered:

1. Random Falsification. Participants submit measurements with random value
to minimize their efforts, or tamper the measurement to facilitate a mislead-
ing effect. For the latter intention, dishonest participants would try to deviate
the aggregation result as much as possible.

2. Falsification with Conspiracy Cooperation. A group of adversaries collude
with each other to intentionally induce the final aggregation result to a wrong
value. Moreover, in order to avoid being identified by statistical analysis-
based abnormal detection method, the dishonest group is able to fabricate
and submit data obeying normal distribution.
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Collusion among participants would result in a more significant deviation,
and the injected artificial data cannot be easily picked out. Taking average func-
tion favg as an example of the aggregation function, if we have a crowd con-
tributed data set Deg = {d1n, ..., dNn , d1f , ..., d

N
f }, where din =< L,M > denotes a

normal measurement, and dif =< L, 2M > denotes a false measurement, then
we will have favg(Deg) = 1.5M which is 1.5 times larger than the actual val-
ue M . Additionally, we do not make any assumption or set any limitation on
the number of dishonest participants in U , in which situation vote-based false
detection approaches are not effective any more.

2.3 Logical Reasoning

Logical reasoning is the formal manipulation of the symbols representing a col-
lection of something known to produce representations of new ones. It generally
involves ontology, basic predicates, and knowledge base (KB). The underlying
ontology can be time points, events (e.g. accident), and fluents (e.g. high temper-
ature), while a predicate represents a property of or relation between ontology
that can be true or false. A KB contains general axioms describing the relations
between predicates. Resolution is one of the most widely used calculi for theorem
proving in logical reasoning. It proves a theorem by negating the statement to
be proved and adding this negated goal to the sets of axioms that are known to
be true to tell whether it leads to a contradiction.

In this work, we consider to map and translate the sensory data collected
during current MCS task into FOL predicates, and use resolution rules to tell
whether the predicates are satisfiable by jointly considering the co-located events
and basic KB. We assume the basic KB has been pre-established given a specific
application scenario, and real time computation only involves translating related
events into predicates and add them to the reasoning KB.

3 Design of CLOR

3.1 Overview

CLOR scheme tries to improve the overall credibility of crowd data in MCS
through identifying and discarding the corrupted part with invalid sensory mea-
surements (i.e. the data belonging to category A and C in Table 1). Theoretically,
only normal part of the collected data remains after the processing.

Framework of CLOR is illustrated in Fig. 2, which basically consists of three
modules. The quantization and representation module formally translates the
input numerical sensory data into predicates, wherein clustering-and-merging
mechanism, projection and translation operation are carried out sequentially.
The KB construction module provides reasoning KB based on co-located events
and pre-established casual logical relations in regard of the MCS tasks. The
filtering module adopts logical resolution to find logical supports for each cluster
and assess overall credibility for them. Finally, clusters with low assessment score
are filtered out and aggregation function is performed on the filtering results.
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Fig. 2. Framework of CLOR

CLOR improves data credibility, and provides space for privacy preserving.
Essentially, CLOR improves the quality of service provided by a MCS application
to the sensory information requesters.

3.2 Data Quantization and representation

In this module, we aim to obtain several quantization levels from the sensory data
and translate them into FOL predicates for further logical reasoning. The number
of levels is application specific and dynamically determined by the distribution of
the sensory measurements, and denoted as m. Each level represents the property
of corresponding data cluster. The detail stages are introduced as follows.

1) Data Clustering: Normally, physical measurements act as signatures
that characterize a place of interest, which implies that measurements for the
same location are correlated with each other, while on the other hand, false data
behave abnormal in the feature space. Meanwhile, the collected data are mainly
exploited at a community scale which provides sufficient participant density
support for clustering the data around a specific location target. Hence, a fixed
width clustering algorithm is first performed onD to group similar data instances
into clusters with similar property. The first data is assigned to be the centroid
of the first cluster. Then for every subsequent data di in D, distance between
centroid of each cluster and data di is calculated as,

dis(si, sc) =

√√√√ K∑
k=1

(si(k)− sc(k))2 (1)

where si is the sensory measurements in di, and sc is the sensory values of cluster
centroid. If the distance to one cluster is less than the cluster width ω, it is added
to that cluster and the centroid of that cluster is adaptively adjusted to the mean
of the inner data. Otherwise a new cluster is formed with that data as the initial
centroid. Here, we novelly define ω as half of the minimum expected deviation
from the true aggregation result for a potential falsify behavior among the crowd
data, i.e.,

ω = 1/2 ·min
i
(
∣∣∣f(D(i))− f(D̃)

∣∣∣) = 1/2 · σdev (2)
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where D(i) represents one of the possible collected data sets containing cor-
rupted ingredient, f denotes the aggregation function during data analysis, D̃
denotes the set of normal data, and σdev denotes the minimum expected mis-
leading degree. The value of parameter σdev is updated adaptively according
to the application context, e.g., a dishonest participant may prefer to consider
a deviation of at least 4◦c as effective for a task that measures city tempera-
ture, while 10dB may be a meaningful value in an application of received signal
strength measurement. The clustering operation generates a set of fixed width
clusters C = {C1, .., Cn} in the feature space.

2) Clusters Merging: In order to map the sensory data into several dis-
crete levels, we introduce a merging stage to combine similar clusters together.
The similarity between clusters can be measured by their inter-cluster distance.
Hence, distance dis(sic, s

j
c) between each cluster Ci and Cj is calculated, and

a merging operation is performed between the two clusters with the minimum
inter-cluster distance to generate a new cluster. The new cluster combines the
data points in the two neighbor clusters and is added into C to join the next
round of comparison and merging. This iterative procedure is continued until the
inter-cluster distances of remaining clusters are all bigger than width ω, making
these distances the m largest ones.

Note that clusters with a bigger size do not inherently indicate higher credi-
bility as the number of malicious participants may be more than the honest one,
so vote-base approach can not help here.

3) Projection: The above process provides us with m separated areas (i.e.
clusters) in the K-dimension feature space. However, what we need are discrete
levels, say, some points distributed in the space, so a mapping function is required
to map one cluster into one single point. Generally, the centroid of a cluster
can describe its property well, so we propose to use the centroid of clusters to
represent them. Hence, the extracted m levels are defined as Lev = {s1c , ..., smc },
and sic equals to fc(i), which denotes the calculation of the centroid of cluster
Ci.

4) Translation: Each quantization level is a K-dimension feature vector, we
propose to translate them independently. Specifically, each sensory measurement
in sic is first converted into linguistic variables M(sic(k)) with function M(x).
There has already been many works on linguistic representation such as fuzzier
in fuzzy logic, so we propose to rely on the state-of-art methods. For example,
the value is replaced with ”WA” or ”CO” (Warm or Cold) according to its scale
in a temperature monitoring application. Then we introduce a FOL predicate,
denoted as HoldsAt(F, T, L), which means Fluent F holds at time interval T at
location L, to describe the statements corresponding to the linguistic variables.
Finally, the translation result regarding level i is defined as

T (i) = HoldsAt(M(sic(1)), T, L) ∧ ... ∧HoldsAt(M(sic(K)), T, L) (3)

3.3 Knowledge base construction

The reasoning KB is constructed by incorporating related events into the basic
KB. Physical phenomena sensed in the same region during a time period are
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often related, we define these phenomena as related events. Basically, the col-
lection of related events can be obtained from two main sources: i) the reports
of other MCS applications from the same MCS platform, and ii) the geo-tagged
observations and information collected from social networks. For example, the
degree of crowdedness in different regions of an urban area could influence the
corresponding noise level, and practically, it can not only be identified through
mobility-based sensing application [14], but also be detected from human obser-
vations with social sensing [15]. On the other hand, the basic KB contains a set
of logical formulas representing the causal relations between events and the sen-
sory phenomena of MCS applications, and it is application specific. The method
of event collection and relation formulation are out the scope of this paper, we
assume related events and basic KB are known prior, and denoted as E and
KBbasic. Finally, the reasoning KB can be represented as KB = E ∪KBbasic.

3.4 Data Filtering

The quantization module formally map sensory data indicating different phe-
nomenal property into discrete levels. We employ logical resolution to find evi-
dence for each level of announced sensory phenomenon, and estimate its credi-
bility.

Algorithm 1 Cluster credibility assessment

Input:
M(sic(k)), KBbasic, E, additive increase factor ra

Output:
Ai

c: credibility assessment score of the i-th cluster
1: Set Ai

c ← 0 for i = 1...m
2: for i = 1→ m do
3: for k = 1→ K do
4: statement = ¬HoldsAt(M(sic(k)), T, L)
5: for ∀f ∈ KBbasic do
6: if resolution(E, statement, f)⇒ NIL then
7: Ai

c + = ra
8: end if
9: end for
10: end for
11: Ai

c =
Ai

c−min(Ai
c)

max(Ai
c)−min(Ai

c)
//Normalization

12: end for

The proposed algorithm is described in Algorithm 1, which will be repeated
sequentially for each dimension in the K-dimensional of the m quantization levels.
Initially, we introduce a variable Ac to denotes the credibility assessment score
of levels in Lev. Then we adopt logical resolution to estimate Ai

c for each level
i. Specifically, we first pick out the logical reasoning for one level’s k-th sensory
measurement and negate it to obtain a statement. We then use inference rules
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of resolution to iteratively perform resolution on the statement, axiom set E,
and every formula in KBbasic to show whether this leads to a contradiction
(logically, an empty clause). A contradiction means that this measurement of
level i is logically supported by E, in which situation we propose to addictively
increase Ai

c with a factor ra. The rationale of the 3rd iteration (Line 5) is that
with more events logically supporting the current level, it should be more reliable,
while the 2nd iteration (Line 3) indicates that with more dimension of sensory
measurements being supported, the current level should be more reliable. For
each cluster, an estimation score would be generated with this iteration reasoning
procedure. We normalize these estimation values and obtain an assessment for
the credibility of each level (Line 13).

Finally, the level with the highest credibility assessment is determined to be
reliable, and the corresponding data cluster regarded as the container of normal
data, i.e., C∗ = argmax

Ci

{Ai
c}. Other contributions in the data set are regarded

as false and filtered out.

4 Evaluation

4.1 Settings

In this section, we aim to test the effectiveness of CLOR with a typical MCS-
based environmental monitoring application. In such applications, portable sen-
sors are equipped with mobile participants to collect physical information. Specif-
ically, we choose an open source temperature measurement traces obtained from
the CRAWDAD data set [16], which contains 5030 measurement items from 289
active taxicabs collected around the GPS location (41.9, 12.5) in Rome. In order
to simulate the potential dishonest behaviors that falsifies sensory data, some
items of the data set are modified. Here, we consider the adversary model of
falsification with conspiracy cooperation as it is harder to detect. Measurements
of these items are replaced with random values generated from a normal distri-
bution with mean parameter µ equalling to the value of misleading target Serr

and standard deviation parameter σ = 1. Note that the false data are fabri-
cated to obey normal distribution to imitate smart collusion among a dishonest
group. Further, the synthetic data set is divided into two sets according to the
submission time of the contribution to conduct two experiments independently.
Finally, as mentioned above, we assume the KB has been pre-established given
our application scenario.

We consider the minimum possible deviation caused by data falsification to
be 4◦, so the cluster width is set to be 2◦. Meanwhile, the falsification target
Serr for time period 1 and time period 2 are set to 14◦ and 8◦ to effectively
mislead the aggregation results. Two sets of fabricated measurements are then
generated and used to replace sensory measurements of the selected data items in
the original data set. We assume that all the simulations are under a closed-world
assumption, i.e., all relevant events are defined in the KB. For each time period,
an complete KB is defined as presented in Table 2. Here we provide 3 levels (e.g.
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Cold, Warm, Hot) to quantize the collected temperature measurements, and we
emphasize that other situations can be easily generalized.

We evaluate the effectiveness of CLOR using credibility metric ℜD, given by

ℜD = 1− (

∣∣∣f(D)− f(D̃)
∣∣∣

min(f(D), f(D̃))
) (4)

where D̃ = D − Df , and Df is the set of false data. ℜD is a posterior value
calculated by comparing the filtering results of CaPa with the ground truth.
Obviously, the less false data in D, the more similar f(D) and f(D̃) will be,
and the higher credibility D could achieve. Without loss of generality, we adopt
average function as the aggregation function f during data analysis.

Table 2. A complete knowledge base for logical reasoning

Period
(# of events, # of logical relations)

Cold

(< 10◦C)

Warm

(10 ∼ 20◦C)

Hot

(> 20◦C)

Morning (8,10) (4,10) (1,10)

Noon (3,10) (9,10) (4,10)

4.2 Results

According to the scheme, collected data are first processed with the quantization
and representation module to generate discrete levels for further reasoning. We
evaluate the effectiveness of this procedure based on data of the two time periods.
The results of each processing stage are shown in Fig. 3 (from left to right), sep-
arately. For time period 1, the data are first clustered into 15 groups, which are
then merged by comparing their inter-cluster distance with 2, the cluster width,
generating 3 new clusters with values distributed in the feature space. Centroid
of the 3 clusters are extracted to project data cluster into discrete data point,
and finally mapped to linguistic state ”Cold”, ”Warm”, ”Cold”, respectively.
Similarly, 22 clusters are generated in time period 2, which are represented with
state ”Hot”, ”Cold”, and ”Warm” by merging, projection, and mapping. The
number of output levels (3 for both periods) are mainly determined by cluster
width (2 in our simulation). With application specific knowledge, proper width
can be carefully chose to roughly separate normal and false ingredient into d-
ifferent groups. During the clustering phase, one data point is added to all the
clusters within certain distance, so some clusters depicted in Fig. 3 are similar
with each other. Note that the similarity (or redundancy) is significantly reduced
with the merging phase.
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Fig. 3. Data quantization and representation results for two time periods. The result
of data clustering, clusters merging, and projection are given, separately

Given the pre-established KB in Table 2, credibility of the discrete levels are
assessed using logical reasoning. The normalized assessment scores are presented
in Fig 4. As expected, level with more supported events achieves higher score.
Further, clusters are classified as normal or false based on their assessment score.
Obviously, level 1 and 3 present the highest score (around 0.8) for time period
1, while the highest score of period 2 is level 3. Thus, cluster 1 and 3 generated
from data of period 1 are labelled as normal, and cluster 3 is determined to be
the normal container for time period 2. The remaining data points in the set are
labelled as false.

Finally, we evaluate the performance of CLOR in Table 3. Since we assume
all the unmodified measurements are reliable, the average temperature measure-
ments are regarded as the ground truth value here. The falsification target is
where the collusive group likes to mislead the aggregation result, and the fal-
sification result is the real value it turns out to deviate to. Then the posterior
credibility for both falsification result and CLOR output are evaluated. As illus-
trated in Table 3, CLOR improves the overall credibility from 0.84 and 0.83 to
0.99 for the two selected time periods.

(Comparison) We consider CLOR as the first attempt to assess data credi-
bility considering possible false forms without reputation information for typical
MCS applications. Hence, we emphasize that the credibility advantage CLOR
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Table 3. Performance evaluation of CLOR

Metric
Ground

Truth

Falsification CLOR

Target Result Credibility Result Credibility

Period 1 8.85 14 10.27 0.84 8.81 0.99

Period 2 14.05 8 12.05 0.83 14.16 0.99

achieves is also relative to the location attestation-based scheme in [12], reputation-
based scheme in [7] and provenance logic-based scheme in [13].

5 Conclusion

We have presented a Clustering and LOgical Reasoning based scheme CLOR to
improve data credibility for typical MCS applications. In view of the potential
data falsification threat, CLOR proposes to assess overall credibility of sensory
data without the aid of reputation system. Clustering and logical reasoning tech-
niques are introduced to exploit spatial correlation of data and logical relation of
co-located events. We describe the corresponding processing and filtering mod-
ule in detail. The simulation results show that CLOR can adequately improve
the overall credibility under the cases considered.
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