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Abstract—Mobile crowdsensing (MCS) is a new paradigm
which takes advantage of pervasive mobile devices to collabora-
tively collect data and analyze physical phenomenon. As mobile
devices are owned and controlled by individuals with various
capabilities and intentions, a main challenge MCS applications
face is to ensure the credibility of the crowd contributed data.
Existed works attempt to increase confidence level of the sensory
measurements by validating the location. However, the required
infrastructure or neighbor support may not always be available,
and the unreliable form containing false sensory data with a
valid location is implicitly ignored. In this paper, we propose
a novel Crowd-based Credibility Improving Scheme (CCIS) to
improve the credibility of data in possible false forms leveraging
crowd data property and crowd participants’ reputation. Based
on the data clusters generated using a lightweight fixed-width
clustering algorithm, CCIS is able to adequately identify and
filter out the clusters constituted mainly by false data using
reputation information as the classifier. We conduct simulations
on a publicly available trace with crowd contributed temperature
measurements, the results show that CCIS yields an improvement
of overall data credibility of around 1.2 with clustering accuracy
over 96%.

Index Terms—Mobile crowdsensing; data credibility; reputa-
tion score; clustering algorithm.

I. INTRODUCTION

The demand for more pervasive sensing of physical world
and the proliferation of human-carried smart devices with rich
set of embedded sensors have given rise to a new sensing-
oriented application paradigm, known as mobile crowdsens-
ing (MCS) [1]. In a MCS application, ubiquitous sensors
of public crowd instead of specialized mote-class sensors
perform participatory or opportunistic sensing, and collect
interested physical data for further aggregation and analysis
in cloud-based platform. A broad spectrum of applications
have been developed based on MCS, including environment
monitoring (e.g. noise pollution), smart traffic (e.g. congestion
monitoring), city management (e.g. network measurement) [2],
etc.

One major challenge for the adoption of a MCS application
is the assurance for credibility of the contributed sensory data
[3]. As an important dimension of data quality, data credibility
stands for the extent to which the good faith of data sources
can be relied upon to ensure the data really represents what
it is supposed to be. The threat level of data falsification is
high in MCS as sensors are owned by individuals [4], and

typically the issue exists due to three factors: (1) the openness
characteristics of network, (2) human greedy that drives them
to maximize their profit while minimizing their efforts [5], and
(3) potential malicious intention of participants. Specifically,
participants have the motivation and capability to contribute
false data to earn money without actually executing the task
or merely to mislead the conclusion of MCS applications
by injecting artificial data. For instance, an Internet Service
Provider may generate false measurement to degrade its com-
petitor’s performance evaluation while increasing their own
profit. Such misbehavior will deviate aggregation result and
hinder the global awareness of phenomenon of interest.

Many works have been done to deal with the flawed ingredi-
ent in collected data and improve the credibility. In traditional
Wireless Sensor Networks (WSNs), inner-cluster endorsement
[6] and statistic analysis [7] are introduced to detect false
data injection attack launched by compromised sensors and
aggregators, respectively. However, the endorsement scheme
requires a prior knowledge on the number of malicious sen-
sors, while the statistic scheme actually focuses on solving
a MITM (Man-In-The-Middle) attack. Another category of
solution attempts to increase the credibility using location
attestation obtained from infrastructure-based [8] or neighbor-
assisted [9] verification. Unfortunately, the requirement of
infrastructure and neighbor support may not be feasible, while
the real-time location verification process is time-consuming,
and most importantly, these solutions implicitly ignore a kind
of contribution containing false sensory data and valid loca-
tion. In [10], a reputation framework is proposed to estimate
the trustworthiness of contributions for social participatory
sensing systems, the heuristic model and empirical thresholds
it use constrain its scalability.

This work proposes CCIS, a crowd-based credibility im-
proving scheme to assure the data credibility in MCS applica-
tions without third-party involvement or extra-knowledge re-
quirement. Clustering algorithm is performed on the location-
intensive crowd-contributed data to formally group false and
normal ingredient into different groups. And crowd partici-
pants’ reputation are introduced to identify and filter out the
false ones, improving overall credibility for the crowd data.
The main contributions of our work are three-fold:

1) Data credibility issue in MCS applications is described
through analyzing the state space of data validity, and for



the first time, the type of false data with invalid sensory
measurement and valid location is considered;

2) We propose a data credibility improving scheme, CCIS,
leveraging lightweight clustering algorithm and partic-
ipant reputation information as two building blocks to
filter out the false ingredient from the collected data;

3) We validate the scheme using synthetic data, and show
the credibility improvement against location attestation-
based scheme and good performance on clustering ac-
curacy.

The rest of this paper is organized as follows. Related works
are summarized in section II. In Section III, the problem will
be formulated and adversary models will be described. We
outline the key components of scheme CCIS, and then intro-
duce how CCIS facilitates better data credibility in section IV.
In Section V, simulation results that indicate the effectiveness
of the scheme will be provided. Finally, conclusions will be
presented in Section V.

II. RELATED WORK

As a new sensing paradigm, MCS is a particular subset of
the traditional WSNs with the support of widely distributed
mobile crowd participants. The reliability issue of collected
data also exists in WSNs applications, and various approaches
have been proposed in literature. In this section, we summarize
the related research works on data credibility assurance from
both the perspective of WSNs and MCS.

A. False data detection in WSNs

In the field of WSNs, the potential sources of false data (out-
lier) include noise, events, and malicious attack [11]. In [6], an
interleaved hop-by-hop authentication scheme is proposed to
detect injected false data packets by checking endorsements
of the co-located nodes. A sensory report is determined to
be trusted only when the number of endorsements exceeds
the number of possible malicious nodes. And an approach
of aggregate-commit-prove is proposed to secure information
aggregation by constructing efficient random sampling and
interactive proofs in [7]. Clustering algorithm is used to detect
anomaly in WSNs in [12]. While the inter-cluster distance is
chosen to be the classifier in [12], we propose to use overall
reputation information of a sensory data cluster to determine
whether it is normal or not.

Another form of WSN that is vulnerable to false data threat-
en is Smart Grid, which relies on widespread sensors to collect
power system information for state estimation. The adversary
may inject false measurement reports to mislead the state
estimation process through compromising meters and sensors,
and result in disruption of the energy distribution [13]. In [14],
an efficient injection detection scheme is proposed through
exploiting spatial-temporal correlations pattern between grid
components. Spatial correlation is also used in our work, while
for a different purpose of clustering the sensory data.

Solutions in WSNs are instructive to understand the sit-
uation of data credibility in MCS, however, characteristics

of MCS (e.g. human-involvement) must be considered to
effectively guide the data analysis process.

B. Approaches in MCS

We emphasize that credibility issue of data in MCS becomes
more crucial as sensors are carried and owned by individuals
with various capabilities and unknown intentions as it makes
every participant a potential threat source.

In work [15] and [16], Trusted Platform Module (TPM)
is adopted to assure data trustworthiness. However, such
embedded trust module is not yet available for most mobile
devices, and malicious participants can still cause distortion
of the measurements by deliberately initiating sensing action.

On the other hand, as location being a common tag for
sensory measurements, validating location can achieve a cer-
tain degree of reliability on the sensed data [17]. Based on
this concept, a series of approaches have been proposed,
and can be classified as infrastructure-based scheme [18][8]
and peer-assisted scheme [9]. In [8], a lightweight protocol
named Echo is presented, in which the location of user is
successfully proved when it is able to return the challenge
packet from the verifier (typically wireless infrastructure) in
constrained time. A peer-assisted scheme is proposed in [9]
to validate user’s location based on the verification from co-
located users connected by bluetooth. Such solutions require
either infrastructure support or neighbours’ involvement, and
add a high overhead on sensor devices during proving them-
selves. Moreover, the case that dishonest participants submit
faked data from valid location is not proper handled in those
schemes. The proposed scheme CCIS attempts to detect and
identify false data from the perspective of sensory data instead
of location, which is general and scalable.

III. PROBLEM STATEMENT

Overview of the workflow of MCS applications we con-
sider in this paper is illustrated in Fig. 1. Typically, it
consists of a cloud-based platform and a set of participants
U = {u1, ..., un} who perform sensing task T at location L.
Specifically, we focus on location-based environmental-centric
sensing tasks that collect numerical data for further analysis
(e.g. temperature, noise level). During the execution of task
T , individual ui collects a series of measurements denoted
as si, and submits it together with the corresponding location
li to the platform before pre-defined time deadline, thus the
submitted data of ui is a tuple in key-value syntax, denoted
as di =< li, si >.

By the end of T , the centralized platform will obtain a
data set D = {d1, ..., dn} (grouped by participant id), based
on which some aggregation function f will be performed to
provide statistical result for publish. However, as some false
or erroneous ingredient exists in D as shown in Fig. 1, the
aggregation result may deviate from the expected true value.
Here we consider data di as trustworthy (normal) if and only if
its location component li and sensory measurement component
si are both valid, in other words, di is false when either li or
si is invalid. And the validity of li and si is defined as:
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Fig. 1. Overview of the workflow of typical MCS applications, and possible threats to data credibility. Typically, an application is parsed as sensing task
which is further carried out in three stages: 1) Task allocation to the participant crowd, 2) Task execution with devices of the crowd, and 3) Crowd data
utilization by the application server, where data credibility is considered as an crucial part of the utilization stage, and data falsification threats arise as
the crowd participants representing various capabilities and purposes. Specifically, network measurement and temperature monitoring are depicted as two
illustrative example applications with potential credibility threats listed

1) Validity of Location. Announced location li of ui is valid
if it is within an acceptable distance from location lc
where ui currently at.

2) Validity of Sensory Measurement. Sensory measurement
si is valid if it reflects the ground truth of physical
phenomenon of the corresponding location li.

According to the validity of component li and si, the state
space of validity of data di can be represented with four
categories as shown in Table I, where symbol T means the
value is true and symbol F means false. Generally, a location
attestation-based scheme attempts to improve data credibility
through picking out data with invalid location in category B1

and category C, ignoring possibly false data in category A,
which is more common in a MCS application especially when
malicious intention is considered.

TABLE I
SPACE STATE FOR THE VALIDITY OF CONTRIBUTION DATA IN REGARD TO
VALIDITY OF LOCATION li AND VALIDITY OF SENSORY MEASUREMENT si

li

si
T F

T Normal data Category A

F Category B Category C

Finally, we assume that location L refers to an area of
interest within certain distance of L instead of a specific spot
as physical measurements are usually spatial correlated, and

1Indeed, providing valid sensory data at invalid location (category B) is not
feasible as an user is unable to contribute valid data of one location when he
is not really there. Otherwise, the contribution is treated as valid considering
a possible situation of submission delay.

all sensory data are aligned on measurement features. And two
types of adversary model are considered:

1) Random Falsification. Participants submit measurement
data with random value to minimize their efforts, or
tamper the measurement to facilitate a misleading effect.
For the latter intention, dishonest participants would try
to deviate the aggregation result as much as possible.

2) Falsification with Conspiracy Cooperation. A special
case of the random falsification model, in which a group
of participants collude with each other to intentionally
induce the final aggregation result to a wrong value by
submitting false data with similar value. Moreover, in
order to avoid being identified by statistical analysis-
based abnormal detection method, the dishonest group
is able to fabricate and submit data obeying normal
distribution.

Collusion among participants would result in a more signifi-
cant deviation, and the injected artificial data cannot be easily
picked out. Taking average function favg as an example of
the aggregation function, if we have a crowd contributed data
set Deg = {d1n, ..., dNn , d1f , ..., d

N
f }, where din =< L,M >

denotes a normal measurement, and dif =< L, 2M > denotes
a false measurement, then we will have favg(Deg) = 1.5M
which is 1.5 times larger than the actual value M . Addition-
ally, we do not make any assumption or set any limitation on
the number of dishonest participants in U .

IV. DESIGN OF CCIS

This work tries to improve the overall credibility of crowd
data in MCS through identifying and discarding the corrupted
part with invalid sensory measurements, which refers to the
data belonging to category A and C in Table I. Theoretically,
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Fig. 2. Framework of CCIS

only normal part in the collected data remains after the
processing as data in category B do not pose a threat.

Framework of the proposed scheme CCIS is shown in
Fig. 2, which consists of five functional components: a)
reputation training, b) data clustering, c) clusters merging,
d) data filtering, and e) data aggregation. Based on those
components, CCIS is carried out in two phases sequentially,
the initialization phase where reputation profile for participants
are trained and obtained, and the filtering phase where raw
sensory data is classified as false or normal with clustering
algorithm and available reputation information as two building
blocks. Finally, clusters identified as false data container are
filtered out and aggregation function is performed based on
the filtering result.

A. Initialization phase

In order to obtain basic knowledge about the participants’
reputation, we propose to introduce an initialization phase for
reputation training. During this phase, the distance between
each piece of sensory data si and real world measurement sr
is first calculated as,

dist(si, sr) =

√√√√Nf∑
j=1

(si(j)− sr(j))2 (1)

where s(j) denotes the value of the j-th feature for measure-
ment s, and Nf denotes the size of feature space. The validity
of si is determined by comparing dist(si, sr) with a predefined
threshold dth. Then individual reputation scores are calculated
based on the validity of contribution in an AIMD (additive
increase and multiplicative decrease) way in order to clearly
set reputation of participant with different behavior apart. The
process is illustrated in Algorithm 1, and it ends up with
reputation evaluation result REP = {R1, R2, .., Rn}. For
simplicity, reputation scores in REP are further normalized
using:

Ri =
Ri −min(REP )

max(REP )−min(REP )
(2)

Note that this training process is only required in the very
start of a MCS application, corresponding knowledge can be
used as a metric in both the continued tasks and other MCS
applications. User profiles from social network are feasible

alternative to obtain reputation information, but it is not in the
scope of our work.

Algorithm 1 Participant Reputation Score Calculation
Ri: reputation score of the i-th participant with same
initially value rI
ra: additive increase factor
rm: multiplicative decrease factor
n: the number of participants
mi: the number of contributions from participant i
for i = 1 → n do

for j = 0 → mi do
if dist(sji , sjr) > dth then
Ri+ = ra

else
Ri/ = rm

end if
end for

end for

B. Filtering phase

It is reasonable to say that contribution from participant with
better reputation tends to be more reliable. However, using
reputation score alone as the credibility metric is ineffective,
because setting a proper threshold to distinguish corrupted
part from the crowd data is hard and inflexible. Moreover,
such straightforward strategy basically denies the possibility
for participants with low reputation to submit normal data,
and neglects accidentally low quality contribution from par-
ticipants with high reputation. On the other hand, clustering
algorithm is effective for detecting outlier of a set of data,
while not adequate in handling samples containing fabricated
false data with ambiguous amount. Additionally, the choice
of a proper cluster width parameter for a clustering algorithm
is non-trivial. To overcome these drawbacks while retaining
the advantages, a hybrid approach is proposed to identify the
clusters with well-defined width as normal or false utilizing
participants reputation as the classifier.

Generally, physical measurements act as signatures that
characterize a place of interest, which implies that mea-
surements for the same location are correlated with each
other. Meanwhile, the collected data are mainly exploited at a



community scale which provides sufficient participant density
support for clustering the data around a specific sensing
location. Hence, a fixed width clustering algorithm is first
performed on D to group similar data instances into clusters
with similar property. The first data is assigned to be the
centroid of the first cluster. Then for every subsequent data
di in D, Euclidean distance between centroid of each cluster
and data di is calculated. If its distance to one cluster is less
than the cluster width2 ω, then it is added to that cluster and
the centroid of that cluster is updated accordingly. Otherwise
a new cluster is formed with that data as the initial centroid.
Here, we novelly define ω as half of the minimum expected
deviation from the true aggregation result for a potential falsify
behavior among the crowd data, i.e.,

ω = 1/2 ·min
i
(
∣∣∣f(D(i))− f(D̃)

∣∣∣) = 1/2 · σdev (3)

where D(i) represents one of the possible collected data sets
containing corrupted ingredient, whose value and amount are
both unknown, D̃ denotes the set of normal data, and σdev

denotes the minimum expected misleading degree. The value
of parameter σdev is adjusted adaptively according to the
application context, e.g., a dishonest participant may prefer
to consider a deviation of at least 4◦c as effective for a
task that measures city temperature, while 10dB may be a
meaningful value in an application of received signal strength
measurement. The clustering operation produces a set of fixed
width clusters C = {C1, .., Cn} in the feature space. The
advantage of this simple approach is that only one pass is
required, and the complexity of the algorithm is O(ncnd),
where nc and nd is the number of clusters and data points,
respectively.

The clusters are then labelled as normal or false with the
aid of their overall reputation. In this way, both humanity
dimension (participant reputation) and data dimension (cluster
property) are taken into consideration. The reputation of a
cluster is defined as the average reputation of the contributors
of every piece of data in that cluster:

R(Ci) = 1/Nci
·
∑
j

Ru(sj)

subject to Ru(sj) ∈ REP, sj ∈ Ci, j ∈ [1, Nci ]
(4)

where Nc denotes the number of sensory measurements in
Ci, and u(sj) is the participant id of measurement sj . Metric
R(Ci) reveals the credibility of Ci with respect to the overall
reputation condition within Ci. Hence, the cluster that repre-
sents the highest reputation is first selected and determined to
be the container of normal data, i.e.,

C∗ = argmax
Ci

{R(Ci)} (5)

and the data points inside are remained.
Note that data points in C∗ only cover a fraction of

the normal ingredient of D̃. In order to improve clustering

2We use cluster width to describe the maximum acceptable distance to the
centroid for one data point to be added into that cluster, and use radius to
describe the actual maximum distance to the centroid for all the data points
in that cluster.

accuracy, we further introduce a merging stage to combine
clusters similar to C∗ with C∗ to form a new cluster C∗

m. The
merging process will enlarge the radius of C∗ as more data
are integrated into it, thus a new cluster width ω′ need to be
chosen first to set an upper bound for the distance between
a data point and the centroid of C∗. Here, we set parameter
ω′ to ω + σC∗ , where σC∗ denotes the standard deviation of
measurements in C∗. This operation equals to transferring the
centroid of C∗ to a circle with radius σC∗ . σC∗ is here chosen
to be the increment because it reflects the deviation level of
C∗, thus a centroid stays within the distance of σC∗ to C∗

can be considered as acceptable.
Proposition 1: If cluster Ci satisfies dist(C∗, Ci) < σC∗ ,

then ∀dj ∈ Ci, dj is qualified to join C∗
m.

Proof: According to the definition of ω, the radius of Ci

satisfies ri < ω, then

max
j

(dist(C∗, dj)) = dist(C∗, Ci) + ri

< σC∗ + ω = ω′
(6)

such that all points in Ci are within the distance constraint to
be added into C∗

m.
The merging stage is carried out as follows:
1) For each cluster Ci in C, the distance dist(C∗, Ci)

between Ci and C∗ is calculated as the Euclidean
distance between their centroid.

2) According to Proposition 1, the distances are then com-
pared with σC∗ , and cluster Ci is classified as normal
and integrated with C∗ if dist(C∗, Ci) < σC∗ .

The process ends up with a output C∗
m, and data points not

belonging to C∗
m form another cluster Cf labelled as false.

Finally, data in Cf is regarded as corrupted ingredient and
filtered out from D to improve the overall credibility. And
participants’ reputation scores are dynamically updated using
Algorithm 1 (increase the reputation of the contributors of data
in C∗

m, and decrease the reputation of those in Cf ) to involve
the evaluation of participants’ contribution during this task.

V. EVALUATION

A. Settings and Metrics

We consider a typical application in this section, say, lever-
aging MCS for environmental monitoring. In such application-
s, portable sensors are equipped with mobile participants for
collecting physical information. Specifically, we evaluate the
proposed scheme on an open source temperature measurement
traces obtained from the CRAWDAD data set [19], which
contains 5030 measurement items from 289 active taxicabs
collected around the GPS location (41.9, 12.5) in Rome.
Meanwhile, some items are modified to simulate the dishonest
behaviors that falsifies sensory data. Here, we consider the ad-
versary model of falsification with conspiracy cooperation as it
is harder to detect. Typically, participants with lower reputation
are more likely to submit faked data than their counterparts,
so we randomly replace their temperature measurements with
random values generated from a normal distribution with mean
parameter µ equalling to the value of misleading target Serr



TABLE II
PARAMETERS SETUP FOR CCIS

Parameter
Additive

Factor

Multiplicative

Factor

Reputation

Threshold

Cluster

Width

Value 1 2.5 0.2 2

and standard deviation parameter σ = 1. We generate falsifica-
tion data obeying normal distribution to imitate smart collusion
among a dishonest group. Moreover, the synthetic data set is
divided into two sets according to the submission time of the
contribution to conduct two experiments independently.

The corresponding setup parameters are presented in Table
II. We consider the minimum possible deviation caused by
data falsification to be 4◦, so the cluster width is set to be
2◦. And the mean temperature measurement for the two time
period is 8.85◦ and 14.05◦. In order to effectively mislead the
aggregation result, the falsification target Serr for time period
1 and time period 2 is set to 14◦ and 8◦, respectively. Two sets
of faked measurement are then generated and used to replace
the measurements of selected data items in the original set.

For the evaluation part, the performance of clustering al-
gorithm is evaluated using overall accuracy, which is defined
as

Aoverall =

∑Ncluster

i=1 TPCi

Ndata
(7)

where TPCi refers to True Positive and equals to the number
of correctly classified data in cluster Ci (e.g. Normal data
that classified into a false data cluster which will be discarded
do not belong to TPCi), and Ncluster and Ndata denotes the
number of clusters and data points, respectively. Meanwhile,
the effectiveness of CCIS is evaluated using credibility metric
ℜD, given by

ℜD = 1− (

∣∣∣f(D)− f(D̃)
∣∣∣

min(f(D), f(D̃))
) (8)

where D̃ = D−Df , and Df is the set of false data. Obviously,
the less false data in D, the more similar f(D) and f(D̃) will
be, and D will have a higher credibility. Finally, without loss
of generality, we adopt average function as the aggregation
function f during data analysis.

B. Results

During the initialization phase, each participant’s reputation
is evaluated based on the quality of their submitted mea-
surements. We assume the raw data in [19] are all valid,
and take the mean value of the temperature measurements
in corresponding time period as the real temperature. Then
one’s reputation is adequately decreased (increased) if the
distance between the real value and his sensory measurement
exceeds (stays below) predefined threshold 1.5 (this parameter
can be adjusted to simulate different amount of dishonest
participants). Fig. 3 shows the normalized training results
regarding each participant’s reputation with initial reputation
of each participant set to 1.
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Fig. 3. Reputation of participants after the initialization training phase
(participant id ranges from 4 to 368 with 289 valid ids)

During the filtering phase, clustering algorithm in CCIS is
first performed on the modified set to gather data points with
similar value into the same group. Clustering results for the
two time periods are illustrated in Fig 4 with the value of
overall reputation for each cluster depicted as well. As we
can tell, clusters containing false ingredient turn out to have
low reputation in both periods, and cluster 4 (reputation 0.436)
and cluster 21 (reputation 0.512) represent the highest overall
reputation for each period. Meanwhile, clusters generated for
each period share joint area, leaving a space for merging.

According to the scheme, cluster 4 in the first set and cluster
21 in the second set are first identified and determined to
be normal. Without further processing, the aggregation result
will be 8.864◦ and 14.281◦ with accuracy 58% and 6% for
each period. The estimation result is acceptable, while the
accuracy is poor. In order to improve clustering accuracy, the
merging approach of CCIS is performed among the generated
clusters. The cluster width is updated by adding the standard
deviation of cluster 4 and cluster 21 (both equal to 1.2) to
ω, which renders ω′ = 3.2 for both periods. The merging
results are illustrated in Fig. 5. For each period, two clusters
labelled as normal or false are generated. The normal one
consists of 1) data from cluster C∗ identified in data clustering
stage and described as normal data-1, and 2) data from the
neighbor clusters of C∗ identified in the cluster merging stage
and described as normal data-2, which may introduce a small
amount of false data. The remaining data form the false cluster
and will be eventually discarded.

In Fig. 6, we take time period 1 as an example, and
statistically compare the temperature measurement distribution
of the modified data set and the data set after being filtered
using CCIS. The falsification operation deviates the mean
value by fabricating a faked normal distribution around 14◦C
(Fig. 6(a)). On the other hand, the misleading deviation is
successfully removed with CCIS to bring the statistical result
back to its real value (Fig. 6(b))..

Finally, the evaluation results for our proposed scheme CCIS
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(a) Result for time period 1 (from 6 o’clock to 10 o’clock)
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(b) Result for time period 2 (from 11 o’clock to 15 o’clock)

Fig. 4. Clustering results (left Y-axis) and overall cluster reputation (right
Y-axis) for each cluster
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Fig. 5. Clusters merging results of CCIS for two periods of time. For both
periods, the crowd data are clustered into two clusters, and labelled as normal
or false based on each cluster’s reputation

are illustrated in Table III. Temperature estimation is misled
to a wrong value (resulting in a higher estimation for period
1 and a lower estimation for period 2) due to the introduction
of artificial measurements. Specifically, for time period 1, the
scheme improves the overall data credibility from 84% to
99% with clustering accuracy 96%. And the scheme yields an
improvement of overall data credibility of 1.19 with clustering
accuracy 97% for time period 2.

(Comparison) For the scenario considered in our work,
location attestation-based schemes are unable to identify any
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(a) Temperature distribution of the modified data set
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(b) Temperature distribution of the crowd contributed data after
CCIS filtering

Fig. 6. Statistical analysis for data distribution before and after CCIS filtering
for time period 1. The Y-axis represents the number of data points regarding
different temperature, and the curve in red shows the normal fitting for the
data set

false contributions as all the location components in the data
set are valid. Hence, we emphasize that the improvement of
credibility achieved by CCIS stated in Table III is also relative
to the credibility level location attestation-based schemes can
achieve.

VI. CONCLUSION

We have presented a crowd-based scheme CCIS to improve
data credibility for typical MCS applications. Other than
the scenarios considered in location attestation-based scheme,
CCIS especially handles the cases that dishonest participants
submit false data from valid location. A fixed-width clustering
algorithm is introduced to cluster the contributions into groups,
and a merging approach is further performed on the groups to
improve clustering accuracy. Finally, reputation information
is adopted to identify clusters holding false data and filters
them out. The simulation results show that CCIS adequately
improve the overall credibility under the cases considered.
Further works will include reputation profile evaluation with
social network information, the consideration for more general
form of data.



TABLE III
SUMMARY OF FILTERING RESULT AND EVALUATION RESULT

Metric
Real

Result

Misleading

Target

Falsification

Result

CCIS

Result
Accuracy

Credibility

(False, CCIS)

Credibility

Improvement

Period 1 8.85 14 10.27(↑) 8.86 96% (0.84, 0.99) 1.17

Period 2 14.05 8 12.05(↓) 14.13 97% (0.83, 0.99) 1.19
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