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a b s t r a c t 

Mobile crowdsensing has become a popular paradigm to collaboratively collect sensing data from per- 

vasive mobile devices. Since the devices used for mobile crowdsensing are owned and controlled by in- 

dividuals with unpredictable reliability, varied capabilities, and unknown intentions, data collected with 

mobile crowdsensing may be untrustworthy. In particular, a mobile crowdsensing system is subject to 

collusion attacks where a group of malicious participants collaboratively send fake information to mis- 

lead the system. Defending against collusion attacks requires stronger defense mechanisms not available 

in existing works. In this paper, we propose a new framework for improving data credibility, named FIDC, 

in mobile crowdsensing to alleviate the threats posed by collusion attacks. FIDC seamlessly integrates two 

types of correlations: the spatial correlation of sensing data and the correlation between sensing data and 

provenance knowledge. While both correlations have been adopted separately in previous crowdsensing 

systems, the exploitation of an joint effort in FIDC poses a special technical challenge to fine-tune the 

performance. Evaluated extensively with a public mobile crowdsensing data for temperature monitoring, 

FIDC outperforms existing methods with respect to false detection accuracy and overall data credibility. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

h  

n  

w  

l  

(  

t  

e  

b  

h  

m

 

s  

w  

i  

t  

t  

Z

(

i  

s  

t  

I  

e  

s  

m  

r  

t  

d

 

t  

o  

o  

i  

r  

d  

b  

h

1

. Introduction 

The past few years have witnessed the massive prevalence of

uman-carried smart devices. These devices are equipped or con-

ected with a rich set of powerful embedded sensors, such as GPS,

ireless interface, and air quality monitor. Such advancements

ead to a new sensing paradigm, known as mobile crowdsensing

MCS) [1] or participatory sensing [2] , where individuals use

heir own mobile devices to perform sensing tasks, and collect

nvironmental data for specific applications running in the cloud-

ased platform. So far, a broad spectrum of MCS applications

ave been developed, including environment monitoring [3] , city

anagement [4] , network measurement [5] , and many more. 

A major concern of MCS is on the credibility of collected

ensing data [6] . MCS relies on mobile devices of individuals

ith unknown trustworthiness, varied capabilities, and different

ntentions to perform sensing tasks. In fact, it has been reported

hat participants may submit measurements with random values

o get rewarded with minimal effort [7] . Even worse, dishonest
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ndividuals may inject deliberately fabricated data to mislead the

ystem. As shown in Fig. 1 , dishonest participants could corrupt

he collected data, which results in incorrect data analysis results.

f the data credibility problem remains, the MCS system would

ventually become a Garbage-in-Garbage-out (GIGO) system or a

ystem serving for illegitimate purposes. For example, in a noise

onitoring application, a real estate agent may submit false noise

eadings with lower values regarding a specific region to promote

he sale of their own properties. Overall, it is critical to ascertain

ata credibility in nearly all MCS applications. 

While extensive research has been devoted to addressing

he data credibility problem [8–10] , the problem is kept largely

pen when the system is under collusion attacks, i.e., a group

f malicious participants work together to mislead the system

nto making a wrong decision [11] . Specifically, for those schemes

elying on the correlation characteristics of collected data to

iscover abnormal data [8] , collusively contributed false data can

e neither filtered out as outlier nor identified with majority

oting. Consequently, exploiting data characteristics alone is not

ble to guarantee data credibility. On the other hand, building

rust on the provenance (i.e., the derivation history) is suitable

or the evaluation of binary observation [9,10] , but not effective

or decimal data, which is a more common data format under

ollusion attacks. For example, it is easy to find support for
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Fig. 1. An example of MCS application with dishonest participants involved in data 

collection. The contributions of dishonest participants are essentially garbage data. 

As a result, the output using the garbage data may be useless or misleading, turning 

the application to a Garbage-in-Garbage-out (GIGO) system. 
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observation “high temperature”, but difficult to find support for

data “temperature = 20 °C ”. No single solution works well under

potential collusive threat, and this motivates our work. 

In this work, by jointly exploiting data characteristics and

provenance knowledge, we propose a novel framework to improve

data credibility, named FIDC, for MCS applications. Specifically,

FIDC is designed to mitigate a set of data falsification attacks

which aim at compromising data aggregation process of existing

systems. FIDC takes advantage of spatial correlation of sensing

data and credibility metric regarding provenance 1 information.

Intuitively, spatial correlation could be explored to provide dis-

crete groups for provenance based credibility evaluation. On the

other hand, provenance knowledge includes those information

independent to the collected data, which makes provenance-based

credibility assessment immune to collusion attacks. Hence, we

could integrate spatial correlation and data-provenance correlation

in a data distilling-and-filtering manner. 

The major technical challenges of the integration include: (1)

how to prepare proper discrete data groups by analyzing spatial

correlation, and (2) how to evaluate the credibility of these groups

(instead of data points) with provenance knowledge. In view of

the above challenges, FIDC first introduces a clustering algorithm

to exploit spatial correlation, which would formally separate

data into different groups. Further, FIDC refers to provenance of

two dimensions: participant provenance (reputation) and context

provenance (co-located events), and leverages these information

to calculate a credibility score for each group and distinguish the

corrupted part. In this way, the integration is properly organized

to improve the overall credibility of collected data and effectively

defend against collusion attacks. 

The main contributions of this paper include: 

1) We propose FIDC to defend against the potential data falsifica-

tion threats. In FIDC, both spatial correlation of data dimension

and correlation between sensing data and provenance knowl-

edge (w.r.t. user reputation and context) are studied to improve

overall data credibility. 

2) A clustering algorithm is utilized to analyze correlation charac-

teristics of collected data; participants reputation together with

context information are introduced to constitute a credibility

metric to guide the false filtering process. 

3) We extensively evaluate our proposed framework with syn-

thetic traces of temperature measurements. Results show that

FIDC achieves high credibility of sensing data under the collu-

sion attacks. 

2. Related work 

MCS is a new sensing paradigm functionally extending the

idea of traditional wireless sensor networks (WSNs). With data

collection as the core mission, reliability issues of collected data

in WSNs [12,13] have been well studied [14] . For example, Zhu

et al. [15] propose a vote-based solution to detect injected false

data packets by checking endorsements of the co-located nodes.

In [16] , a clustering algorithm is used to detect anomaly. While

solutions in WSNs are instructive to the study of data credibility in

MCS, influences of human involvement and corresponding threats

(e.g., collusion attack) must be carefully considered. In addition

to the studies in the context of WSNs, some recent works have

focused on assuring data credibility for MCS, which can be roughly

categorized into model-based schemes and false detection-based

schemes, as shown in Fig. 2 . 
1 Provenance knowledge could be in many different forms. Its intuitive meaning 

refers to some extra knowledge known before hand. For instance, in an air pollution 

m

i

.1. Model-based schemes 

Model-based schemes build a system to assess the credibility

f collected data. Social factors are introduced to estimate data

redibility in [17–19] . In these solutions, social relationship is used

o describe how dependable one data source is [17] , or initiate a

oting on collected data among the participants by providing an

nteraction network [18] . In fact, having all participants in a single

ocial group is not feasible and limits the amount of participants

or an application. 

In [9] and [10] , provenance information is first introduced to

ssist the trust assessment process. Provenance is a set of user

nformation and contextual factors that describe the origin of

he collected data. Modeling and evaluating the corresponding

rovenance can yield an comprehensive understanding of data

redibility. As one type of provenance, users’ reputation informa-

ion often acts as a metric of the trustworthiness of the sensing

ata [20,21] . To calculate participants’ reputation, empirical models

e.g., Gompertz function) are adopted to estimate one’s cooperative

evel based on their behavior in the history. In view of the context

rovenance, Wang et al. [10] point out that multiple events ob-

erved during a short period or at the same location share logical

elations. So they propose to evaluate data credibility based on the

upport of co-located events. However, it is not easy to set a trust

hreshold to formally distinguish false and normal contribution,

ecause contribution with more support could also be abnormal.

onsequently, such solutions are not adequate for autonomous

alse detection. 

.2. False detection-based schemes 

False detection-based solutions try to improve data credibility

hrough identifying and discarding the false data. Techniques in

his category include TPM-based schemes, location attestation-

ased schemes, and data analysis-based schemes. 

In [22] and [23] , Trusted Platform Module (TPM) is adopted to

nsure that data sensed by a mobile sensor and reported to an ap-

lication server are indeed captured by authentic and authorized

evices within the system. In other words, sensing data that fail

o pass the authenticity check are considered false. However, the

mbedded trust module is not readily available for most mobile

evices, and malicious participants can cause distortion of the

easurements by deliberately initiating sensing action. 

As location being a common tag for sensor measurements,

alidating location can achieve a certain degree of reliability of the
onitoring system, the provenance knowledge could be a news report of gas leak 

n a region. 
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Fig. 2. Classification of MCS data credibility improving schemes. 
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Fig. 3. Architecture of typical MCS applications. To facilitate a better understanding 

of data credibility issues, network measurement and temperature monitoring are 

depicted as two illustrative example applications with potential credibility threats. 
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ensing data [24] . Based on this idea, a series of approaches have

een proposed, which can be classified as infrastructure-based

chemes [25] and peer-assisted schemes [26] . Sastry et al. [25] pro-

ose to verify location with a challenge-response method, namely,

t considers one contribution as valid only when its contributor

an respond in constrained time. A peer-assisted scheme is pro-

osed in [26] to validate user’s location based on the verification

rom co-located users connected by bluetooth. Such solutions

equire either infrastructure support or neighbors’ involvement,

nd add a high overhead on sensor devices. Moreover, those

chemes implicitly ignore the case where dishonest participants

ubmit fake data from valid locations. 

In essence, false measurements could be considered as cor-

upted data. Hence, proper data analysis techniques should be

 good choice to detect the abnormal and find the truth. Cheng

t al. [8] propose a false detection and correction algorithm based

n spatial-temporal compressive sensing (ST-CS). They assume that

he data from low reputation participants are suspicious, and make

he judgment by comparing the data with reconstruction values

o tell whether they are notably different. Alternatively, Meng

t al. [27] point out that correlations exist ubiquitously among

ntities, and correlated entities (e.g., observations in the same area

r during a short period) have similar values. As such, they formal-

ze an optimization problem to discover truth by minimizing the

iscrepancy between observations of entities. Expectation Maxi-

ization algorithm is used in [28] to solve a maximum likelihood

stimation problem, and find observations that meet a specific

robability of correctness. These techniques detect abnormal (or

nd truth) by exploiting the correlation among collected data.

learly, they would lead to misleading conclusion when the false

ata are from a group of malicious participants. 

Like [9] and [10] , FIDC considers provenance information, while

oth user and contextual factors are utilized as the classifier of

ormal and false ingredient. Similar with [8] and [27] , spatial

orrelation is exploited in FIDC, while clustering algorithm is used

o analyze data characteristics. As shown in Fig. 2 , FIDC is unique,

ince no similar method before has integrated both provenance

nformation and spatial correlation in one solution. 

. Preliminaries 

.1. System model 

We consider a typical mobile crowdsensing architecture shown

n Fig. 3 . It consists of a cloud-based platform and a set of par-
icipants U = { u 1 , . . . , u N } that perform sensing task T at location

 . Typically, T is carried out in three stages: (1) task allocation

o the participant crowd, (2) task execution with devices of the

rowd, and (3) crowd data utilization by the application server.

ver the platform, data credibility is considered an crucial part

f the utilization stage, and data falsification threats are common

s the crowd participants may have different purposes. A sensing

ask normally specifies multiple modalities of sensing data to be

ollected, so we consider that the collected data in MCS applica-

ion are multi-dimensional numerical readings (e.g., temperature,

oise level). 

During the execution of task T, u i collects measurements with K

ifferent types of sensor, where each value of a measurement can

e denoted by s i ( k ), where i ∈ [1, N ], and k ∈ [1, K ]. Sensing data

re submitted together with location l i ∈ L to the platform before

ime deadline. The contribution from u i forms a tuple in key-value

yntax, denoted as d i = < l i , s i > . By the end of task execution, the

loud-based platform will obtain a data set D = { d 1 , . . . , d N } , based

n which some aggregation function f is performed to obtain

onclusions. 

.2. False data in MCS 

Data collected from individuals with unknown trustworthiness

ay be unreliable. The potentially erroneous or fabricated data

ould deviate the analytical result from the expected true value.

ere we discuss the validity of data with respect to the validity of
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Table 1 

State space for the credibility of data with respect to validity of location l i and va- 

lidity of sensing measurement s i . 

l i \ s i T F 

T Normal data Category A 

F Category B Category C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A sketch of the adversary model. The model consists of three aspects, which 

could be divided using two layers. The sensor exploitation layer transforms phys- 

ical entities into virtual sensors of MCS (i.e., identities), while the data collection 

layer aggregates data from the sensors. This work focuses on the assurance of data 

credibility, namely, the threat regarding Layer 2. 
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its location and measurement component. We first explain several

terms in data validity. 

Definition 1. Announced location l i of u i is valid if it is within an

acceptable distance from location l c where u i currently locates. 

Definition 2. Sensing measurement s i is valid if it represents the

ground truth of the physical phenomenon of corresponding loca-

tion l i . 

Definition 3. Data d i is trustworthy (normal) if its location com-

ponent l i and sensing measurement component s i are both valid. 

Based on the above definitions, we can further represent the

state space of credibility of data d i with four categories as shown

in Table 1 , where symbol T ( F ) means the value in corresponding

row (column) is true (false). 

Note that location attestation-based schemes like [24] try to as-

sure data credibility by detecting data with invalid location in cat-

egory B and category C, ignoring possibly false data in category

A. Unlike these schemes, we propose to improve overall credibility

through identifying the group of data with invalid measurement.

Meanwhile, we consider that the measurement data in category B

are due to submission delay and thus valid data. Hence, the prob-

lem of detecting corrupted data in this paper is to identifying data

in Category A and Category C. 

3.3. Adversary model 

We allow anyone with an appropriate device to be a par-

ticipant. We consider that any participant may act maliciously

and submit a false measurement. During the task, a dishonest

participant is able to “fool” the sensors to create false readings

(e.g., using the flame of a lighter to create the false impression

of a high temperature). An adversary can also program the device

to spoof the sensors’ readings [29] or deliberately tamper the

collected measurements. Moreover, a few adversaries may launch

on-off attack, namely, they first send correct data to gain high

reputation scores, then randomly send false sensing data to bypass

the reputation-based detection techniques [30] . Assuming these

threats and the possible false data described above, we consider

two types of adversary model: 

1) Independent falsification . Participants independently submit

measurement data with random value to minimize their effort s,

or tamper the measurements to mislead the system. For the lat-

ter intention, dishonest participants aim at deviating the aggre-

gation result as much as possible. 

2) Collusive falsification . A group of participants collude with each

other to intentionally induce the final aggregation result to

a wrong value by submitting false data with similar val-

ues [11] . Moreover, in order to avoid being detected by statis-

tical analysis-based abnormal detection methods, the dishonest

group is able to fabricate and submit data obeying normal dis-

tribution. 

To be clear, we illustrate the adversary models regarding in-

volved entities, their corresponding identities, and data validity

in Fig. 4 . The threats of both independent and collusive model

arise from the data collection layer, wherein collusion among
articipants would result in a more significant deviation and

he injected artificial data cannot be easily detected based on

patial correlation. Compared to existing works, such as Wang

t al. [9] and Talasila et al. [24] , we do not make any assumption

r set any limitation on the number of dishonest participants in

 . Under such assumption, vote-based false detection approaches

re not effective any more as the amount of malicious participants

ay be larger than the honest group. 

Besides, we also provide a discussion on Sybil attack, a partic-

larly harmful attack in sensor networks [31] . As shown in Fig. 4 ,

 Sybil attacker could generate multiple identities with only one

hysical device, and launch attack on data aggregation, or resource

llocation. Especially, for MCS applications, these identities would:

1) constitute a malicious group to mislead the aggregation result

Layer 2), and in return, (2) earn the attacker additional reward

nd reputation (Layer 1). Hence, from the perspective of layer

, Sybil attack is actually of no difference with collusive falsifi-

ation, and if being successfully defended, would constitute no

nterference to the reward or reputation system. 

.4. Logical reasoning 

Logical reasoning is the formal manipulation of the symbols

epresenting a collection of known objects to produce repre-

entations of new ones. Logical reasoning generally involves an

ntology, basic predicates, and knowledge base. Specifically, the

nderlying ontology can be time points, events (e.g., accident),

nd fluent (e.g., high temperature), while a predicate represents

 property of or relation between ontology that can be true or

alse. Knowledge base contains general axioms describing the

elations between predicates. Resolution is one of the most widely

sed calculi for theorem proving in logical reasoning. It proves a

heorem by negating the statement to be proved and adding this

egated goal to the sets of axioms that are known to be true to

ell whether it leads to a contradiction. 

In this work, we map and translate the sensing data col-

ected during current MCS task into First Order Logic (FOL)

redicates, and use resolution rules to tell whether the pred-

cates are satisfiable by referring to the co-located events and

asic knowledge base. We assume the basic knowledge base

as been pre-established in a specific application scenario, and

eal-time computation only involves translating related events into

redicates and add them to the reasoning knowledge base. 

. FIDC framework design 

.1. Overview 

It is reasonable to assume that contribution from participant

ith better reputation tends to be more reliable. However, using
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Fig. 5. Overview of FIDC. 
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eputation score alone as the credibility metric is not adequate,

ecause setting a proper threshold to distinguish the corrupted

rowd data is hard and inflexible. Moreover, such a strategy ba-

ically denies the possibility for participants with low reputation

o submit normal data, and neglects accidentally low quality

ontribution from participants with high reputation. On the other

and, clustering algorithm is effective for detecting outlier of a set

f data, but the choice of a proper cluster width parameter for a

lustering algorithm is non-trivial. To overcome these drawbacks

hile retaining the advantages, FIDC proposes to utilize participant

nd context provenance based trust as the classifier. 

As shown in Fig. 5 , FIDC basically consists of two modules.

he data clustering module takes the collected data as input, and

ormally clusters false and normal data into different groups with

 clustering-and-merging method. The filtering module makes a

redibility assessment for every cluster considering both partici-

ant provenance (reputation information) and context provenance

related events’ support), and discards the low-rated groups to

ield an improvement of overall credibility. 

.2. Data clustering 

Normally, physical measurements act as signatures that char-

cterize a place of interest, which implies that truthful measure-

ents for the same location are correlated [32] . Meanwhile, the

ollected data are mainly exploited at a community scale which

rovides sufficient participant density. We perform data clustering

s the first step towards separating false and normal data apart. 

1) Initial clustering: A fixed-width 

2 clustering algorithm is

erformed on D to group similar data instances into clusters with

imilar property. The first data is assigned to be the centroid of

he first cluster. Then for every subsequent data d i in D , distance

etween centroid of each cluster and data d i is calculated as, 

is (s i , s c ) = 

√ 

K ∑ 

k =1 

(s i (k ) − s c (k )) 2 (1) 

here s i is the measurements in d i , and s c is the values of cluster

entroid. If the distance to one cluster is less than the cluster

idth ω, it is added to that cluster and the centroid of that cluster

s adaptively adjusted to the mean of the inner data. Otherwise, a

ew cluster is formed with that data as the initial centroid. Here,

e define ω as half of the minimum expected deviation from

he true aggregation result of a potential misbehavior among the

rowd data, i.e., 

 = 1 / 2 · min 

i 
(| F (D (i )) − F ( ̃  D ) | ) = 1 / 2 · σ de v (2) 

here D ( i ) represents one of the possible collected data sets con-

aining corrupted ingredient, F denotes the aggregation function, ˜ D
2 Here, the fixed-width means the width is fixed for each specific application 

ontext instead of setting a static value for all scenarios. 

t  

t  

p  

A  
enotes the set of normal data in D ( i ), and σ dev denotes the min-

mum expected misleading degree. The value of parameter σ dev 

s updated adaptively depending on the application context, e.g., a

ishonest participant may prefer to consider a deviation of at least

 °C as effective for a task that measures city temperature, while

0 dB may be a meaningful value in an application of received

ignal strength measuring. The clustering operation produces a set

f fixed width clusters C init = { C 1 , .., C n } distributed in the feature

pace. 

2) Merging clusters: Clusters generated in the first stage may

e similar with each other as data point are added into all the

lusters within certain distance. A merging stage is further intro-

uced to combine similar clusters together. The similarity between

luster C i and C j can be measured by their inter-cluster distance,

hich is defined as the distance between their centroid s i and

 j , namely, dis ( s i , s j ). Hence, the inter-cluster distances are first

alculated, and a merging operation is performed between the two

lusters with the minimum distance to generate a new cluster. The

ew cluster combines the data points in the two neighbor clusters

nd is added into C init to join the next round of comparison and

erging. This iterative procedure continues until the inter-cluster

istances of remaining clusters are all bigger than width ω. 

Note that the amount of malicious participants may be larger

han the honest ones, so cluster with a bigger size does not

nherently indicate a higher credibility, and vote-based solu-

ions are ineffective in this situation. In addition, we may not

now the right number of clusters before hand, so we adopt

 lightweight clustering-and-merging approach instead of using

xisting techniques like K-means. 

.3. False filtering 

The clustering module provides several unlabeled clusters, new

etrics are needed to classify them as normal or false. For this

rocessing, we propose to use cluster credibility as the metric, and

ssess it with the aid of provenance knowledge. 

.3.1. Cluster credibility assessment 

We take each generated cluster as a whole, and leverage a two

imensional provenance knowledge, denoted as P K i = < K 

i 
p , K 

i 
c >,

o assess each cluster’s credibility. K 

i 
p and K 

i 
c represent participant

rovenance and context provenance. For each cluster C i , we es-

imate trust based on K 

i 
p and K 

i 
c independently, and calculate its

redibility assessment Cr i as follows: 

r i = α · T oP i + (1 − α) · T oC i i ∈ [1 , M] (3) 

here ToP i and ToC i denote estimation of trust on provenance K 

i 
p 

nd K 

i 
c , respectively. Parameter α and 1 − α are the weights of the

wo trust estimations. The adjustment of the weights depends on

he nature of the task. For example, in privacy preserving tasks,

articipant’s identity is often hidden for privacy consideration.

s reputation information in such situation may be unavailable,
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3 Such investment is only required for the training period. We still have to find 

fact from the collected data during the running of MCS applications. 
α is set to be 0. Similarly, for tasks with well-established user

profile like social sensing, α is set to be considerably high for

participant-based trust. Trust metric ToP i and ToC i are normalized

to bring them into a notionally common scale (i.e., [0, 1]), so

assessment result Cr i is also in the range of [0, 1]. 

Finally, the cluster showing the highest credibility assessment

score is considered to be reliable, and the data inside the cluster

are regarded as normal, i.e., 

 

∗ = arg max 
C i 

{ Cr i } (4)

Other contributions in the origin data set D are regarded as false

and filtered out. Participants’ reputation scores are dynamically

updated with an AIMD algorithm (i.e., increase the reputation of

the contributors of data in C ∗, and decrease the reputation of the

rest. Refer to Algorithm 1 for more details). 

Algorithm 1 Participant-based Trust Estimation. 

Input: 

Initial reputation R 0 , AIMD factors f add 
r and f mult 

r 

Output: 

T oP i : trust score of the i th cluster based on cluster reputation 

1: Set R i ← R 0 for i = 1 . . . N

2: // checking each measurement of each participant 

3: for i = 1 → N do 

4: for j = 0 → m i do 

5: if dist(s 
j 
i 
, s 

j 
r ) > d th then 

6: R i = R i / f mult 
r 

7: else 

8: R i = R i + f add 
r 

9: end if 

10: end for 

11: end for 

12: // checking each participant in each cluster 

13: for i = 1 → M do 

14: for j = 1 → N 

i 
C 

do 

15: T oP i = 1 / N C i 
· ∑ 

j R u (s j ) 

16: end for 

17: end for 

18: for i = 1 → M do 

19: T oP i = 

T oP i −min (T oP i ) 
max (ToP i ) −min (ToP i ) 

//Normalization 

20: end for 

Next, we will describe the estimation of ToP i and ToC i for

cluster C i based on reputation information and contextual support.

4.3.2. Estimation of trust on participant provenance 

Every cluster is constructed with data contributed by partic-

ipants with varied capabilities and intentions. Hence, from the

perspective of participant provenance, cluster’s credibility can be

measured by the involved contributors’ reputation. We define this

measurement as trust on participant provenance. Generally, the

reputation of a participant, denoted as R i , is what is generally

believed about his/her behavior, and is a knowledge of the past.

Trust on one cluster’s data can be built on its overall reputation

situation. 

The proposed estimation algorithm is described in Algorithm 1 ,

which contains a participant reputation training process (Line 3–

Line 11) and a trust estimation process (Line 13–Line 17). Initially,

participants’ profiles may be incomplete, so we introduce an ini-

tialization phase and provide a reputation training method. Dur-

ing this phase, we assume that organizers of the sensing campaign

would assign or deploy a reliable sensor at the spot (known as an-
hor node in [19] ) to sense and collect the ground truth 

3 s r . By re-

erring to this information, reputation scores of the other data con-

ributors are assessed. Specifically, the distance between each piece

f sensing data s i and s r is first calculated using Eq. (1) . The valid-

ty of s i is determined by comparing dist( s i , s r ) with a predefined

hreshold d th . Next, individual reputation scores are calculated

ased on the validity of contribution by AIMD (additive increase

nd multiplicative decrease)(Line 8 and Line 6). Traditional repu-

ation systems are designed for commercial networks [33] , while

ystems in existing works are based on social networks [17,18] . In

uch systems, entities have transaction or interaction with each

ther, and reputation score is calculated based on ratings from

ther members in the community. Typical MCS applications fol-

ow a different network architecture, namely, each participant only

ommunicates with the centralized server, and reputation scores of

hem are evaluated by the server according to their performance

ith no peer ratings. So the reputation management strategies

e.g., sum or average the ratings) in the above works are not ef-

ective here. Here we choose to use AIMD method to distinguish

he treatment of participants with different behavior, and impose

osts for participants to establish and maintain good reputation. 

The training phase ends up with a reputation evaluation result

EP = { R 1 , R 2 , .., R n } . Given the participants’ reputation, the overall

eputation of each cluster is calculated as the average reputation

f the contributors of every piece of data in that cluster (Line 15).

e then normalize these values and use them as the participant

rovenance-based trust estimation. The rationale is that a group

ith higher overall reputation tends to be more reliable. 

Note that the training process is only required at the very

eginning of a MCS application, and the estimated reputation in-

ormation can be used as a metric in both the continued tasks and

ther MCS applications. User profiles from social network [17] and

eedback from community [18] are feasible alternatives to obtain

eputation information, while they are not in the scope of our

ork. 

.3.3. Estimation of trust on context provenance 

Co-located events within a short period of time are likely to

ave logical relations with the current MCS task, so trust on one

luster can also be estimated by exploiting context specific logical

upport. Specifically, we propose to translate clusters into logical

redicates, and leverage logical reasoning to find support and

ssess the context-based trust for them. 

1) Projection: The clustering module provides us with M

eparated areas (i.e., clusters) in the K-dimension feature space.

o provide predicates for reasoning, we need discrete levels, say,

ome points distributed in the space, so a mapping function is

equired to map one cluster into a single point. Generally, the cen-

roid of a cluster can describe its property well, so we propose to

se the centroid of clusters to represent them. Then the extracted

 levels are defined as Lev = { s 1 c , . . . , s 
M 

c } , where s i c denotes the

entroid of cluster C i . 

2) Translation: Each quantization level is a feature vector of

-dimension, and we propose to translate them independently.

pecifically, each measurement in s i c is first converted into fuzzy

ariables M(s i c (k )) with function M(x ) . There are many works on

uch representation such as fuzzier in fuzzy logic. For example,

he value is replaced with “WA” or “CO” (Warm or Cold) according

o its scale in a temperature monitoring application. Then we

ntroduce a FOL predicate, denoted as H(F , T , L ) , which means

nfluence F holds at time interval T at location L , to describe

he statements corresponding to the fuzzy variables. Finally, the



T. Zhou et al. / Computer Networks 120 (2017) 157–169 163 

t

 

b  

b  

r  

p  

o  

M  

c  

i  

m  

f  

o  

f  

t  

c  

p  

a  

r

 

s  

r  

i

 

A

I

O

w  

q  

c  

l  

o  

t  

t  

a  

c  

t  

w  

 

m  

l  

4  

s  

c  

i  

o

4

 

t

 

l  

i  

f  

b  

d  

m  

d

 

i  

o  

c  

o  

h  

i

 

d  

a  

o  

F  

n  

a  

t  

r  

f  

c  

w

 

t  

f  

p  

A  

a  

t  

r  

a  

s  

o  

d  

r

 

a  

d  

o  

F  

t  

m  

r  

t  

T  

p  

c  

v  

r

ranslation result regarding level i is defined as 

T (i ) = H(M(s i c (1)) , T , L ) ∧ . . . ∧ H(M(s i c (K)) , T , L ) (5) 

3) Knowledge base construction: The reasoning knowledge

ase is constructed by incorporating related events into the

asic knowledge base. Physical phenomena sensed in the same

egion during a time period are often related, so we define these

henomena as related events. Basically, related events can be

btained from many different sources, such as the reports of other

CS applications, the geo-tagged observations, and information

ollected from social networks. For example, the density of crowds

n different regions of an urban area can be identified through

obility-based sensing applications [34] , and can be detected

rom human observations from social sensing [35] as well. On the

ther hand, the basic knowledge base contains a set of logical

ormulas representing the causal relations between events and

he sensed phenomena of MCS applications. The method of event

ollection and relation formulation are out of the scope of this

aper. We assume that related events and basic knowledge base

re known a priori, and denoted as E and KB basic . Finally, the

easoning knowledge base can be represented as KB = E ∪ KB basic . 

4) Context-based trust estimation: Given the translation re-

ults and the reasoning knowledge base, we then employ logical

esolution to find evidence for each extracted level, and estimate

ts credibility. 

The proposed algorithm is described in Algorithm 2 , which

lgorithm 2 Context-based Trust Estimation. 

nput: 

M(s i c (k )) , KB basic , E, additive increase factor f add 
c 

utput: 

T oC i : trust score of the i -th cluster based on context support 

1: Set T oC i ← 0 for i = 1 . . . M

2: // checking each feature of each cluster 

3: for i = 1 → M do 

4: for k = 1 → K do 

5: Statement = ¬ HoldsAt(M(s i c (k )) , T , L ) 

6: for ∀ f ∈ KB basic do 

7: if resolution (E, Statement, f ) ⇒ NIL then 

8: T oC i = T oC i + f add 
c 

9: end if 

10: end for 

11: end for 

12: end for 

13: for i = 1 → M do 

14: T oC i = 

T oC i −min (T oC i ) 
max (ToC i ) −min (ToC i ) 

//Normalization 

15: end for 

ill be repeated sequentially for each feature dimension of the M

uantization levels. First, we introduce a variable A to denotes the

redibility assessment score of Lev . Then we estimate A for each

evel based on resolution. Specifically, for each level i , we pick

ut the logical predicate for its k -th measurement and negate it

o obtain a statement. We then use inference rules of resolution

o iteratively perform resolution on the statement, axiom set E ,

nd every formula in KB basic to show whether this leads to a

ontradiction (logically, an empty clause). A contradiction means

hat this measurement of level i is logically supported by E , in

hich situation we propose to additively increase A 

i 
c with a factor

f add 
c . The rationale of the third iteration (Line 6) is that with

ore events logically supporting the current level, the current
evel should be more reliable, while the second iteration (Line

) indicates that with more dimension of measurements being

upportive, the current level should be more reliable. For each

luster C i , an estimation score would be generated with this

terative reasoning procedure. Then we normalize these values to

btain the context-based trust estimation ToC i (Line 14). 

.4. Security analysis 

We prove that FIDC is able to handle the threats presented in

he adversary model in Section 3.3 . 

Location spoofing . Some dishonest participants spoof their

ocation (e.g., GPS spoofing) to pretend a reliable source at the

nterested spot of the MCS application. Unfortunately, it is unable

or a participant at a wrong spot to submit data with correct value

y a guess. Otherwise, it is considered to be a result of submission

elay as illustrated in Table 1 . Based on this fact, FIDC could

itigate such spoofing attack by checking the attached sensing

ata, and filtering the guessing value as a falsified one. 

Independent falsification . The adversaries provide false data

ndependently. The falsified data is different with the normal one

n value, so it would be classified into different groups after the

lustering operation of FIDC. The randomly generated data is lack

f context support, so the corresponding group it belongs to would

ave a low credibility score. Finally, the independently falsified

ngredient would be filtered out due to its low credibility. 

Collusive falsification . Some adversaries collude to submit

eliberately fabricated data, and attempt to have an advantage on

mount during the voting of aggregated data. FIDC does not rely

n the majority voting to decide the validity of collected data.

IDC would first separate these corrupted pieces of data and the

ormal ones into different clusters. Then the overall reputation

nd contextual support of each cluster are studied. Typically,

he collusion group is characterized with relatively lower overall

eputation and fewer supportive events, compared to the group

ormed by honest participants. Hence, the corrupted data from the

ollusion group would be assigned with low credibility scores, and

ill be discarded in the filtering phase. 

Sybil attack . As aforementioned, Sybil attack on data is func-

ionally equal to collusive falsification in MCS applications. The

alsified data generated by a group of Sybil identities would be

icked out in the same way as the mitigation of collusive attack.

s to the threat to the reputation system, we emphasize that there

re no interaction among participants in MCS, so the fake identi-

ies of a Sybil attacker cannot vote for each other to promote their

eputation (like they used to do in eBay). A special case is that the

ttacker performs the measuring, and manipulates the identities to

ubmit the correct data. By doing this, the attacker merely focuses

n the beneficial reward, which wouldn’t cause any bad effect on

ata quality. Some unique information (e.g., IMEI number) can be

equired during the registration to avoid such vulnerability [9] . 

On-off attack . Adversaries may behave as honest participants

t first to gain high reputation scores, and then submit false

ata to interfere data aggregation. In this case, high reputation

f individual is no longer an effective metric of data validity. In

IDC, we refer to the overall reputation of the distilled clusters for

rust estimation instead of using individual reputation, so a few

isleading reputation could not change the rank of the clusters’

eputation and the credibility scores. An extreme situation is

hat adversaries collude with each other to launch on-off attack.

o overcome such threat, FIDC could calibrate the weight of the

rovenance-based trust to rely more (or even thoroughly) on the

ontext provenance. In fact, on-off attack compromises the indi-

idual reputation training process, while alternatively, we could

efer to the social network to gain these information. 



164 T. Zhou et al. / Computer Networks 120 (2017) 157–169 

Table 2 

Default parameter settings. 

Parameter Value 

Additive and multiplicative factor ( f r a , f r m ) (1, 1.5) 

Minimum deviation expectation ( σ dev ) 4 

Classifier of high and low reputation 0.3 

Falsification probability ( p h , p l ) (0.2, 0.9) 

Falsification target ( S 1 err , S 
2 
err ) (4, 8) 

Deviation of the normal distribution ( σ ) 1 

Weight on participant-based trust ( α) 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Data clustering and clusters merging results (From left to right). 
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5. Evaluation 

5.1. Setup 

We test the performance of FIDC based on a typical envi-

ronmental monitoring application. In such applications, portable

sensors of individuals are recruited to collect environmental in-

formation and share them through mobile networks. Specifically,

we utilize an open source temperature measurement traces ob-

tained from the CRAWDAD data set [36] , which contains 5030

measurement items from 289 active taxicabs collected in Rome. 

We assume the raw data points in the original data set are all

trusty. Hence, in order to simulate data falsification behavior of

potential malicious participants, certain data items are manually

modified. We set the initial reputation R 0 of each participant to

1, and assess their reputation using Algorithm 1 . Then we choose

to randomly falsify the measurements of a participant exhibiting

a relatively high (low) reputation with probability p h ( p l ). Here,

p h is introduced to take the on-off attacks into consideration, and

p l is set to be considerably bigger than p h as participants with

lower reputation are more likely to submit false data. Meanwhile,

we define that the adversaries would collusively send fabricated

data, which obey a normal distribution with mean parameter

μ equal to the value of misleading target S err and the standard

deviation parameter σ . The synthetic data set is divided into

two sets according to the submission time of the contribution

to conduct two experiments. We set each period to last for four

hours considering both the need of certain amount of data for

clustering and smoothness of data in each period. 4 As to the

premise of logical reasoning, we assume the knowledge base has

been pre-established for our application scenario as mentioned

above. 

Table 2 lists the default parameter settings. The classifier to

distinguish high and low reputation is set to be 0.3, and partici-

pants with reputation higher and lower than this value would be

chosen as an adversary with probability 0.9 and 0.2, respectively.

Note that this classifier is only introduced to manually construct

a dishonest group. According to the application context, we define

the minimum possible deviation caused by data falsification to be

4 °C (i.e., deviation smaller than 4 °C cannot meet the misleading

demand), so the cluster width is 2 °C . The mean temperature

measurement for the two time periods is 8.85 °C and 14.05 °C ,
respectively. In order to mislead the aggregation result, the falsifi-

cation target S err for time periods 1 and 2 is set to be 4 °C and 8 °C ,
respectively. The deviation parameter of the falsified distribution

is 1. A same weight ( α = 0.5) is given to ToP and ToC to consider a

typical situation where provenance knowledge of both participant

and context dimension are known. 

We carry out our evaluation by studying the impact of pa-

rameters on effectiveness and comparing the performance of FIDC
4 The period length is an application specific value. Using a different period 

length would generate different clustering result, which can be considered as an 

adjustment of input, but would not impact the performance of FIDC. 

i  

n  

2  

m  

t  
gainst typical schemes, which will be introduced in Section 5.3 .

pecifically, two performance metrics are considered. The first one

s overall accuracy, which is defined as 

 ov erall = 

(T P + T N) 

N data 

(6)

here TP and TN refers to true positive and true negative, respec-

ively. TP means that a piece of sensing data is actually true and

lassified into C ∗ as trusted, while TN means that a false report is

etected and rejected. Parameter N data denotes the total number of

ata points in the collected data set. The second metric is overall

redibility 
 D , given by 

 D = 1 −
( | F (D ) − F ( ̃  D ) | 

min (F (D ) , F ( ̃  D )) 

)
(7)

here ˜ D = D − D f , and D f is the set of false data. Compared to the

luster credibility Cr , 
 D is a posterior value calculated by com-

aring the ground truth and FIDC outputs. Obviously, the less false

ata in D , the more similar F ( D ) and F ( ̃  D ) will be, and D will have

 higher credibility. Without loss of generality, we adopt average

unction as the aggregation function F during data analysis. 

.2. Simulation results 

First of all, we sequentially test the performance of the two

odules in FIDC based on the default settings given above. Fig. 6

hows the clustering-and-merging results of the clustering module

or the two independent time periods. For period 1, the data are

rst clustered into 14 groups, which are then merged by compar-

ng their inter-cluster distance with cluster width 2, generating 3

ew clusters with values distributed in the feature space. Similarly,

3 clusters are generated for the sensing data of period 2, and

erged into 3 new clusters. Note that some clusters generated in

he initial clustering phase are similar with each other, and hence
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Fig. 7. Reputation of participants (participant id ranges from 4 to 368 with 289 

valid ids). 

Table 3 

A complete knowledge base for logical reasoning. 

Period ( # of events, # of logical relations) 

Cold Warm Hot 

( < 10 °C ) (10 ∼ 20 °C ) ( > 20 °C ) 

Morning (8,10) (4,10) (1,10) 

Noon (3,10) (9,10) (4,10) 
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Fig. 8. Trust estimation based on participant provenance and context provenance, 

and cluster credibility assessment scores for the two time periods. 
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e perform clusters merging for further distillation. As expected,

he clustering module roughly groups the normal ingredient (e.g.,

luster 3 in period 1), collusively falsified ingredient (e.g., cluster

 in period 1), and randomly falsified ingredient (e.g., cluster 1 in

eriod 1) into different clusters. 

To estimate the participant-based trust, individual reputation

s first evaluated through training. During this phase, we com-

are each temperature measurement with the mean value of all

easurements in the original data set 5 . Then one’s reputation is

ecreased (increased) if the distance between the ground-truth

alue and his/her sensing measurement exceeds (stays below)

 predefined threshold 1.5 (this parameter can be adjusted to

imulate different amount of dishonest participants). Fig. 7 shows

he training result of normalized participants’ reputation with

heir initial reputation equally set to 1. Given these information,

oP of each cluster are estimated using Algorithm 1 . 

To estimate the context-based trust, centroid of these clusters

re extracted to general several discrete levels, which are then

apped to different states. Here we provide 3 states (i.e., “Cold”,

Warm”, “Hot”) for the quantization of the collected temperature

easurements, and emphasize that other situations can be easily

eneralized. Given these application specific states, clusters of

eriod 1 are translated into “Warm”, “Cold”, “Warm” and clusters

f period 2 translated into “Cold”, “Warm”, “Hot”, respectively.

urther, a complete knowledge base is defined and presented

n Table 3 for each period, based on which logical reasoning is

erformed to estimate ToC for each state. 

Fig. 8 shows the credibility assessment results based on par-

icipant and context provenance for the two periods. As expected,

lusters with more supported events have a higher ToC score. By

ointly considering ToP and ToC , the cluster credibility of each clus-

er (i.e., the FIDC output) is assessed using Eq. (3) and presented

ith the triangle points in Fig. 8 . Obviously, cluster 3 for period

 and cluster 2 for period 2 present the highest score, so they are

etermined to be the normal data container. The data in the other

wo clusters are labeled as corrupted ingredient. Specifically, the
5 Raw data are assumed to be reliable, and the mean value is regarded as the 

round truth. Such truth is only introduced for reputation training, and the evalua- 

ion of FIDC results. 

a  

i  

T  

b  

s  
ollusively groups (i.e., cluster 2 in period 1 and cluster 1 in period

) are characterized with lower overall reputation, and the groups

ontaining independently fabricated data (i.e., cluster 1 in period

 and cluster 3 in period 3) are usually lack of contextual support.

ence, the corrupted part can be identified by either a low ToP

r a low ToC . Here we consider a typical situation with both two

rovenances available, while weight α should be dynamically

djusted according to the real situation (e.g., increase the weight

n ToR when only a few logical relations exist). 

In Fig. 9 , we take time period 1 as an example, and statistically

ompare the temperature measurement distribution of the mod-

fied data set and the output filtering results of FIDC. As shown

n Fig. 9 (a), the falsification ingredient deviates the mean value

o around 7 °C by fabricating a fake normal distribution with mis-

eading target 4 °C. On the other hand, the misleading deviation

s successfully removed by FIDC as depicted in Fig. 9 (b), and the

tatistical result are brought back to its real value around 9 °C. 

.3. Performance analysis 

.3.1. Basic comparison 

We compare the performance of FIDC against two typical

chemes: reputation-based scheme (RBS) [17,18,20] and location

ttestation-based scheme (LAS) [24–26] . On one hand, we assume

hat RBS builds a reputation assessment system based on the

articipants’ past behavior, and selects a reputation threshold r to

etermine the trustworthiness of the collected data (i.e., data of

articipants with reputation lower than r are considered as false

nd true otherwise). Note that we manually construct the false

ngredient by setting the reputation threshold to 0.3 in Section 5.1 .

hus, given all the reputation information, r = 0 . 3 facilitates the

est choice for RBS. We also choose r = 0 . 2 as another comparison

cheme. On the other hand, LAS acts as a baseline here, because
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Fig. 9. Statistical analysis for data distribution before and after FIDC filtering for 

time period 1. The Y-axis represents the number of data points regarding different 

temperature readings, and the curve shows the normal fitting for the data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Detection accuracy and data credibility performance of FIDC, RBS, and LAS. 
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data used in this simulation are geographically authenticated, and

are then all accepted as normal collection. 

Fig. 10 shows the false data identification and credibility guar-

antee performance using Eq. (6) and Eq. (7) . In Fig. 10 (a), as FIDC

exploits trust information of the provenance, it outperforms the

RBS and LAS schemes, and achieves a higher detection accuracy for

false data in both periods (0.93 for period 1 and 0.97 for period 2).

Compared to FIDC, RBS (r = 0.3) accepts more false ingredient and

refuses more normal ones due to its ignorance of p h and p l . On the

other hand, RBS (r = 0.2) falsely accepts data of some dishonest par-

ticipants with reputation lower than 0.3, so it has a lower accuracy

than RBS ( r = 0 . 3 ). Compared to the baseline scheme (i.e., LAS),

the accuracy improvement of FIDC are 2.2 and 2.3 for each period.

Fig. 10 (b) shows the credibility evaluation result based on Eq.

(7) . As more false data are formally identified and discarded in

FIDC, FIDC achieves a higher overall data credibility than RBS and

LAS. Specifically, FIDC achieves a credibility of 0.97 and 0.99 for

the two periods, respectively. Compared to the baseline scheme,

FIDC improve the overall credibility from 0.7 to 0.97 for period 1,

and from 0.79 to 0.99 for period 2. 

5.3.2. Impact of adversary ratio 

We also compare the performance of FIDC with typical schemes

under different adversary ratios. The amount of adversaries in-

volved in an application is unknown a priori, and it directly affects

the deviation level of the aggregation result. Both the adjustment

on the reputation classifier and the falsification probability in

Table 2 can result in a different adversary ratio. Here we choose to

vary the reputation classifier (with falsification probability p h and

p l unchanged) to construct data sets with different adversary ratio.

By setting the classifier value to k , we can obtain an adversary

ratio (| D | · p + (1 − | D | ) · p ) / | D | , where D is the set of
R<k l R<k h R < k 
ata whose contributors’ reputation scores are lower than k . For

omparison, we choose RBS with r = 0 . 3 and LAS. The evaluation

esults are shown in Fig. 11 . 

The performance on false data identification accuracy of the

wo periods is shown in the first column of Fig. 11 . It is clear

hat as the ratio of adversaries increases, accuracy of FIDC keeps

teady (around 90% and 95% for period 1 and 2), and outperforms

BS and LAS. Since FIDC exploits the underlying spatial correlation

or data analysis, it can separate false and normal ingredient

nder different adversary ratios. Interestingly, the accuracy of RBS

 r = 0 . 3 ) increases first and decreases after the adversary ratio

eaches 60%. The reason is that the reputation threshold setting to

orm adversary ratio 60% is 0.3, exactly the same as the reputation

hreshold chosen by RBS ( r = 0 . 3 ), in which case RBS could pick

ut all the false data (not including the probabilistic falsification).

s expected, the accuracy of LAS decreases as the ratio increases,

ecause it fails to filter out any corrupted data. 

Again, for the same setting, we test the impact on overall

redibility. Similarly, the curve of FIDC is steady, and keeps at a

igh value of about 97% for period 1 and about 99% for period 2.

he performance of RBS is also steady, but it achieves relatively

ower credibility than FIDC. In particular, when the adversary ratio

eaches 65%, RBS ( r = 0 . 3 ) achieves a similar credibility level as

IDC. We emphasize that this is a special case where the effect

f independent falsification and collusive falsification cancel each

ther out. On the other hand, the curve of LAS follows the similar

rend of its performance on accuracy. This is because the increase

f adversary ratio would assemble a larger dishonest group, re-

ulting in a nearly linear decrease of accuracy and credibility for

he baseline scheme. 

Finally, taking average function as the aggregation function of

he application server, the aggregation results for each scheme

n each period are shown in the third column. Obviously, FIDC

rovides analysis results close to the real value (i.e., 8.85 °C and

4.05 °C ) regardless of the increase of adversary ratio. We owe this

dvantage to the reasonable accuracy and high data credibility of
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Fig. 11. Impact of adversary ratio on detection accuracy, overall credibility, and aggregation result of FIDC, RBS, and LAS (From left to right). 
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IDC as described above. These results demonstrate that our FIDC

cheme is more effective than RBS and LAS under independent

alsification and collusive falsification of a malicious group. 

. Conclusion 

We presented a new clustering-based and provenance-aware

ramework, named FIDC, to improve data credibility for typical

CS applications. First, the data credibility issues are analyzed

ith a set of potential attacks. Then we propose to leverage spatial

orrelation characteristics of data and trust information extracted

rom participant and context provenance to defend against these

ttacks. Based on this principle, the clustering module based

n clustering-and-merging approach and the filtering module

ased on provenance-aware credibility assessment are designed

s two building blocks of FIDC. The simulation results show

hat FIDC improves the overall credibility, compared to existing

eputation-based and false detection-based schemes. 

In the future, we plan to address user privacy and data credi-

ility issues together. We will look into the possibility of studying

nd introducing participants’ correlation as another provenance

imension to gain trust from. In addition, we will consider other

ommon types of data in the implementation (e.g., observations

ollected from social networks). 
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