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Abstract—WiFi networks are vulnerable to rogue AP attacks
in which an attacker sets up an imposter AP to lure mobile users
to connect. The attacker can eavesdrop on the communication,
severely threatening users’ privacy. Existing rogue AP detection
solutions are confined to some specific attack scenarios (e.g.,
by relaying the traffic to a target AP) or require additional
hardware. In this paper, we propose a crowdsensing based
approach, named CRAD, to detect rogue APs in camouflage
without specialized hardware requirement. CRAD exploits the
spatial correlation of RSS to identify a potential imposter, which
should be at a different location from the legitimate one. The
RSS measurements collected from the crowd facilitate a robust
profile and minimize the inaccuracy effect of a single RSS value.
As a result, CRAD can filter out abnormal samples sensed in the
realtime by dynamically matching the profile. We evaluate our
approach with both a public dataset and a real prototype. The
results show that CRAD can yield 90% detection accuracy and
precision with proper crowd presence, even when the rogue AP
is launched close to the legitimate one (e.g., within 1m).

I. INTRODUCTION

The past few years have witnessed a surge in the popularity
of Wireless Local Area Networks (WLAN). People rely more
and more on the wireless Access Point (AP) to get access to
the Internet. In order to attract customers, many public places
(e.g., shops, hotels, airports, etc.) provide WiFi hotspot service
for free. The openness of such places and the weak security
mechanism taken by these hotspots make them vulnerable
to fraud and identity spoof, known as the problem of rogue
APs [1]. In such attacks, a rogue AP pretends to be a
legitimate one by using the same name (SSID), but is actually
launched by an attacker. Through fostering a stronger signal
strength on some mobile devices, rogue APs can induce them
to connect, and analyze or manipulate the communication,
severely threatening users’ privacy.

Extensive work has been devoted to addressing the problem
of detecting rogue AP [2]. However, the problem remains to
be largely open because of the detection scalability issue and
hardware support requirement. Specifically, fingerprint-based
approaches propose to identify the legitimate AP with addi-
tional hardware [3] [4] or wireless-oriented fingerprint [5] [6].
APs exhibiting different characteristics are determined to be
rogue ones. However, such approaches are lack of applicability
for requiring the setup of dedicated specialized hardware, such
as Air Monitor (AM), Wireless Intrusion Detection System
(WIDS), etc. On the other hand, some schemes have been
proposed to analyze packet characteristics on the time domain
[7] [8] [9]. The underlying idea is that if a rogue AP relays user
traffic via the legitimate AP, then connections to the rogue AP

would experience additional latency. These solutions depend
on the scenario in which the rogue AP introduces one more
wireless hop, which is not effective when the attacker has
his/her own Internet access. Existing approaches for rogue AP
detection only work on specific scenarios or hardware. Thus,
we attempt to design an approach that is effective for all rogue
AP types with non-specialized hardware.

This paper proposes a Crowdsensing based Rogue AP
Detection approach (CRAD). As a new sensing paradigm,
crowdsensing uses pervasive mobile devices to sense and
collect information from the environment [10]. On the other
hand, Received Signal Strength (RSS) is a typical wireless
information, and is frequently sensed by mobile devices to
estimate channel condition. RSS at several different locations
can be used to localize a RF transmitter. Intuitively, such
spatial correlation characteristic can also be used to identify
a rogue AP with a different location from the legitimate
one. Based on this concept, in this work, we propose to
exploit the mobile crowd connected to a specific AP, which
is also the potential victim, to collect RSS measurements,
profile legitimate AP, and discover possible imposters. The
advantages of exploring crowd wisdom here are three-fold: 1)
it requires no additional hardware other than users’ devices;
2) it ensures that frequently accessed locations are profiled,
and vulnerable spots monitored; 3) it mitigates the misleading
effect of error-prone wireless measurements.

Despite the above benefits, there are several challenges
of applying crowdsensing to rogue AP detection: 1) How
to maintain an effective profile for AP identification and
measurements matching? 2) How to design a proper matching
operation between the profile and the crowdsensing RSS
measurements considering location distinction among different
samples? For the first question, CRAD proposes a grid-based
measurement profiling method to record the collected infor-
mation. It provides flexibility for matching item and indexing
during the matching process. CRAD attempts to tackle the
second challenge based on an observation that locations near
each other would observe similar RSS. CRAD checks each
item of a new sample by comparing it with its nearest physical
neighbor’s record in the profile, and facilitate an overall
evaluation for the corresponding AP with the majority voting.
CRAD is designed to be running as a background service
without user intervention.

The main contributions of this paper include:
1) We propose a novel rogue AP detection approach based

on mobile crowdsensing, named CRAD, to formally



monitor WiFi network with non-specialized hardware in
the background. As far as we know, it is the first attempt
to exploit the crowd wisdom to detect rogue APs.

2) We propose a grid-based profiling method to main-
tain the crowdsensing measurements, and a matching
mechanism to identify imposter with inter-neighbors’
comparison and the majority voting.

3) We extensively evaluate CRAD with both a real-world
dataset and our own implementation. Results show that
CRAD can yield a high detection accuracy and precision
under the normal attack model.

II. ATTACK MODEL

It is easy to deploy a rogue AP, especially in a public WiFi
hotspot with weak security mechanism [9]. An attacker can
use a hotspot router, a laptop with open access tools (e.g.,
Airbase-ng), or even a smartphone with tethering apps (e.g.,
Android WiFi tether) to impersonate a legitimate AP. In order
to avoid scanning-based detection, the attacker would clone
both the SSID and the MAC address of the legitimate target.
Furthermore, the attacker would attempt to provide a stronger
signal strength on the victims than the legitimate AP, either
by moving close to the victim or increasing its transmission
power. Note that the rogue AP does not have to use a power
that fosters a strength advantage on every devices. So only
some victims would be lured, while other devices in the field
would still connect to the legitimate one but experience a
different signal field. We assume that a rogue AP can only
be present after the start-up of a hotspot (the attacker should
find the target first). The administrator is not required to assist
the detection. However, an unidentified AP placed near the
public AP would very likely attract his/her attention.

Typically, there are two categories of rogue APs:
Coexistence. The legitimate AP and the rogue AP coexist at

the spot when the attack goes on. This category can be further
classified into two forms, namely, with or without relay. Initial-
ly, a rogue AP would spoof its network identifier and increase
its signal strength to lure mobile users to connect. Then it can
simply relay the network flow through the legitimate AP (i.e.
with relay), or provide network access using its own Internet
connection (i.e. without relay). The latter form could bypass
most time-based detection approach.

Replacement. A powerful attacker may manage to replace
the legitimate AP by shutting it down or DDoS attacks. In this
case, only one active AP is available in the location, and users
connect to the rogue AP with no other choices.

Based on a deployed rogue AP, an attacker can eavesdrop
on the wireless communication of the connected devices, and
launch a series of attacks, putting users’ sensitive information
in danger. We attempt to mitigate the above threats1 with
crowdsensing. Note that there may exist malicious users who
intend to tamper their measurements and submit misleading re-
ports [12], we defer such data credibility threat to future work.
In other words, we believe in the majority’s observations.

1Fake Base Station is a similar threat, while targeting base stations [11].
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Fig. 1. Overview of the proposed approach.

III. DESIGN OF CRAD

Generally, mobile users connected to one specific hotspot
are the crowd. Signal strength sensed by each individual of
the crowd constitute a unique spatial identifier for the hotspot.
By passively monitoring the measurements collected by the
crowd, we shall discover the appearance of an imposter.

As shown in Fig. 1, our approach consists of three phases.
Signal strength profiling builds fingerprint for the legitimate
AP based on signal strength measurements. For each AP, a
profile is maintained in the cloud. Wireless crowdsensing is
performed locally by the mobile crowd in the real time, and
provides wireless features of the network for further security
check. Finally, attack detection is carried out to compare
the dynamically collected information with the profile, and
triggers an alert to the crowd if a rogue AP is detected.

A. Background

In CRAD, we leverage the mobile crowd to accomplish
profiling and sensing of the wireless network. Four basic
questions need to be clarified before describing the details:
1) What are the incentives for mobile users to participate? 2)
Why a crowd is required? 3) How to obtain the location? 4)
Is location discrepancy a reasonable assumption?

The incentives. A critical issue for crowdsensing is the
incentive for user participation. In fact, users have incentives
to do so. First, the smartphone devices of users already
perform wireless scan aggressively in the background, and
the frequency is sufficient to facilitate effective run time
monitoring. Second, the victims of rogue AP attacks are users
themselves. It is reasonable for them to be suspicious of the
hotspot and take actions to guarantee a benign environment.

Crowd v.s. individual. A crowd of mobile sensors are
essential for CRAD. If only one stationary smartphone is avail-
able, the attacker could create a similar RSS as undetectable
camouflage by adjusting the transmission power of the rogue
AP [8]. Adopting measurements of multiple locations can
facilitate a robust fingerprint to avoid such misleading effect.
Note that the crowd is actually a virtual crowd, wherein a
moving device within a specific time interval can be regarded
as independent sensors at different locations.



Location tag. We assume there is a location tag for each re-
ported measurement. For the outdoor situation, such as campus
wireless hotspots, the location information could be obtained
with the GPS module. However, GPS becomes ineffective
for indoor scenarios, as many public hotspots are. In our
experiments, we provide a reference map, and collect location
by manually clicking on it. Notice that this cannot serve as
a robust solution. Alternatively, one can easily extend CRAD
by adopting the state-of-the-art indoor localization method.

Location discrepancy. One basic assumption of CRAD is
that there exists a location discrepancy between a legitimate
AP and a rogue AP, as wished by attackers. First, a rogue
AP would be easily exposed when set close to the legitimate
one. On the other hand, by physically moving closer to some
victims, a rogue AP could yield a stronger signal strength
than the legitimate one on the victims’ side, inducing them to
connect with a high probability2.

B. Signal Strength Profiling

CRAD collects RSS information presented in the form of
⟨SSIDi, BSSIDi, li, ri⟩ for a set of APs, where li is the
sensing location, and ri is the set of RSS measurements
sensed at location li. For a specific AP with identifier id,
the corresponding RSS measurements within a time interval I
construct a report, denoted as ℜid = {⟨li, ri⟩|1 ≤ i ≤ Dim},
where Dim = ∥ℜid∥ is the number of different locations,
named measurement dimension. CRAD attempts to build a
profile Pid based on ℜid.

(a) Naive method (b) Grid-based profiling method

Fig. 2. Illustration of signal strength profiling method for a specific AP. Two
reports are collected with the former one (i.e. blue triangle) for profiling,
and the latter one (i.e. red circle) for matching. For simplicity, CRAD maps
the RSS measurements to a two-dimensional physical space, which can be
interpreted as the xy-coordinates of the mobile devices.

A naive method to profile the legitimate AP is to set
Pid = {⟨li, Avg(ri)⟩}, namely, regarding li as the attribute,
and mean of ri as the value, as shown in Fig. 2(a). During
the profiling phase, user mobility provides CRAD the ability
to collect RSS measurements with a larger measurement
dimension. However, since the location is spatially continuous,
the profile of such method would have an inflated scale with
consecutive arriving reports. Moreover, it is intractable to
perform effective matching between such profile (i.e. blue
triangle in Fig. 2(a)) and a sample (i.e. red circle in Fig. 2(a))
as they are not aligned on the attribute domain (i.e. locations).

2By default, given a set of AP with the same SSID, wireless device will
select the AP with the highest SINR to connect to.

Algorithm 1 Grid-based Signal Strength Profiling
Input:

Report ℜid, Area Aid enclosed by locations of ℜid,
Granularity threshold ĝ, Measurement index i, j (i ̸= j).

Output:
Profile Pid for APid

1: Compute the inter-distance di,j between ℜid.li and ℜid.lj
2: Compute the strength distance △ri,j between Avg(ℜid.ri)

and Avg(ℜid.rj)

3: Set threshold △r = 1
∥ℜid∥ ·

∑∥ℜid∥
i=1 Std(ℜid.ri)

4: Sort (in ascending order) distances {di,j} into D = {dk}
5: for k = 1 → ∥D∥ do
6: i = dk(1), j = dk(2)
7: if △ri,j > △r then
8: d̄ = 1/2 · (dk−1 + dk)
9: break

10: end if
11: end for
12: Granularity is calculated as g = max{d̄, ĝ}
13: Divide area Aid into cells C = {ci} with granularity g
14: Pid = {⟨ci, rci⟩| lci is within ci}

CRAD proposes a grid-based method to perform AP pro-
filing, as described in Algorithm 1. Through transforming the
sensing area into small cells, and maping RSS measurements
into them, the algorithm attempts to construct a coarse profile
as shown in Fig. 2(b). The rationale is that RSS are spatial
correlated during the same time interval. In other words, RSS
measurements within a certain distance are similar with each
other, so a fine-grained profile is indeed not necessary.

Specifically, CRAD first calculates a granularity as the
maximum value of a predefined granularity ĝ and a dy-
namically obtained value d̄. For d̄, the algorithm finds the
minimum distance between a pair of measurements whose
RSS difference is larger than threshold △r, and sets d̄ as
the mean of this distance and the proximate distance smaller
than it. The threshold △r is set to be the mean value of RSS
deviation at each location. The underlying reason is that if two
neighbors’ RSS are undistinguishable, they could be regarded
as measurements from one unit. Note that it is still possible
for two neighbor locations to exhibit quite different RSS (e.g.,
misbehavior of the wireless interface), resulting in a small
d̄. Parameter ĝ is introduced to avoid such small granularity.
Given the granularity g, CRAD then generates cells with
size g × g to fill in the sensed space. Finally, the profile is
constructed using the set of cells and the RSS measurements
within each cell. The characteristic value of each cell would
be calibrated with verified new arriving reports to update the
profile in the real time.

C. Rogue AP Detection

CRAD uses the profile as a fingerprint, and check each new
arrival report ℜ by matching with the profile. Specifically, we
need to first find the corresponding item in Pid to match with



for each measurement in ℜ, and then determine whether ℜ
indicates an abnormal considering the overall matching level.

For the first part, CRAD maps the RSS items {⟨li, ri⟩} in
new report ℜ to cells in Pid to obtain a sample S = {⟨cj , rcj ⟩},
where cj .x = ⌈(ℜ.li.x−x0)/g⌉, and cj .y = ⌈(ℜ.li.y−y0)/g⌉.
The number of items in S is called the crowd presence. If an
item is out of the area Aid or the profile’s corresponding cell
is null (i.e. not measured before), we mark it as unchecked.
By doing this, we find the nearest neighbor for each item of
ℜ in Pid, as shown with the red circles in Fig. 2(b). Here, the
grid-based profile provides the ability to find the target cell
for new measurement by a simple transformation instead of
calculating and sorting the inter-distances.

The matching operation is performed based on two basic
observations: 1) RSS measured at one location are similar to
each other, and 2) locations near each other would observe
similar RSS. With these observations, CRAD performs rogue
AP detection by comparing sample value with profile record
in each cell, which are supposed to be similar. Specifically,
the difference between the mean value of the record and
sample measurements are calculated, and then compared with
a threshold ME · Std(Pid.rci). Wherein, Std(Pid.rci) is the
standard deviation of the recorded RSS in ci, and ME is
a spatial and temporal variation factor. A difference bigger
than the threshold is suggested to be obvious, and the sample
value is marked as an abnormal measurement. Otherwise, the
sample value is marked as normal. Thus, with a small ME,
the detection algorithm would be sensitive to the variation in
measurements (Type I error), while a big ME would ignore
some abnormal measurements (Type II error). In this paper,
we set parameter ME to

ME = max(R(Pid.rci)/Std(Pid.rci), R(S.rci)/Std(S.rci)),

where R(X) is the range of set X . ME is adjusted according
to the range of measurements in both profile and samples.

After going through all the cells, CRAD estimate the securi-
ty of current AP using the majority voting. Through majority
voting, the wisdom of crowd is exploited to identify rogue,
since it is abnormal for most locations to observe a drastic
change in RSS. Specifically, if more abnormal measurements
are observed than the normal ones among the matching results,
then a rogue AP attack is supposed to be on-going. In such
situation, the crowd will receive an alert and be suggested
to disconnect from the malicious AP. On the other hand,
the samples are considered as normal, and used to update or
complete (with the items labelled unchecked) the profile.

We propose to introduce a reset mechanism initiated by the
administrator to report an AP movement event, and rebuild the
profile with subsequent crowdsensing reports.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
CRAD approach for detection of rogue AP, on an indoor
localization dataset UJIIndoorLoc [13] and a proof-of-concept
prototype. We first show the approach feasibility with UJIIn-
doorLoc, then evaluate the performance with the prototype.

A. Feasibility Evaluation

With UJIIndoorLoc, we attempt to prove that it is feasible
to identify AP with crowdsensing RSS. To do this, we first
generate a fingerprint3 for each AP from the training subset.
Here, fingerprint of an AP consists of measurements from
all the locations that observe it. Then we randomly choose
measurements of the 520 APs to construct test samples. Two
test groups of samples are generated, one from the training
subset and one from the validation subset, to conduct two
independent tests. Finally, we iteratively regard each AP as
the target and compare its fingerprint with the generated test
samples to find the best match as follows:

Mi = argmin
1≤j≤520

(
1

Ni
·

√√√√ Ni∑
loc=1

(FP loc
i − Sloc

j )),

where Mi is the index of the best match AP, FP loc
i is the

fingerprint element from location loc for the i-th AP, and Sloc
j

is the corresponding test measurement from the j-th sample.
Note that we do not use the proposed method, because the
best match is what we try to obtain here. For each FPi being
checked, the best match sample is supposed to be the sample
from the i-th AP (i.e. Si), namely, we expect i = Mi.

TABLE I
MATCHING RESULTS. EACH ROW SHOWS THE TEST GROUP, THE NUMBER

OF FINGERPRINT AND VALID TEST, THE NUMBER OF MATCH, AND THE
NUMBER OF MISMATCH. TEST SAMPLE THAT INCLUDES MEASUREMENTS

FOR TARGET AP IS DEFINED AS A VALID TEST.

Test Group # FP # Valid test # Match # False
subset 1 520 363 335 (92.3%) 28
subset 2 520 161 132 (82.0%) 29

The matching results are concluded in Table I. We can see
that successful matching ratio is 92.3% (with 3% matching
with its neighbor) and 82% (with 60% matching with its
neighbor4) for the two subsets, respectively. The decrease of
matching ratio for subset 2 can be explained by involving
fewer sensing locations. Hence, it is reasonable to use crowd-
sensing RSS as an identifier for a legitimate AP.

B. Performance Evaluation

1) Setup: Our testbed consists of a 10 × 8m section of a
laboratory environment. As shown in the map area of Fig. 3,
we have installed three IEEE 802.11b/g APs: one is treated
as the legitimate AP (we name it A), and the remaining APs
(we name them B and C) act as rogue APs. The APs are
off-the-shelf NETGEAR WG102 units, and are mounted on
the desk. They are configured with the same SSID, while the
MAC addresses are not modified to obtain the ground truth.
In the profiling stage, only A is switched on. In the detection
stage, B and C are switched on one by one.

3In this part, we do not build a grid-based profile for the AP as measure-
ments of fingerprinting and testing round are from the same locations.

4The positions of APs in UJIIndoorLoc are unknown, we guess dense
deployed APs are utilized with some of them very close to each other.



Fig. 3. Screenshot of the programmed phone. Down below the interface is a
loaded reference map describing the testbed environment.

We develop a RSS measuring and recording prototype
based on android, named CrowdMeasure. Fig. 3 presents the
interface of CrowdMeasure. One can load a map and mark a
location (as an alternative to indoor localization technique)
to perform RSS measuring. We have a researcher walking
around with a smartphone (Huawei Mate 7 with android 6.0)
installed CrowdMeasure to collect RSS information. It collects
RSS measurements every 1sec. During profiling phase, the
smartphone is put on the middle of the desks. During test
samples collection, we put the device on a random place
of each desk, which is supposed to be different from the
corresponding profiling location.

Finally, we realize CRAD’s detection logic in Matlab (this
can be easily extended to the cloud environment), and use
it to analyze the collected data. Considering the experiment
environment, the granularity threshold ĝ is set to be 1m, same
as the length of the desk.

2) RSS Observations: We first investigate the RSS dif-
ference between dynamically collected samples and profile
records. As shown in Fig. 4, samples from the legitimate AP
tend to be similar with the records, while samples from the
rogue AP are quite different. For most locations, we can easily
distinguish normal samples from abnormal ones. However, for
several locations (4 in this experiment), RSS of the legitimate
one and rogue one all match well with the profile (location
15, 16 and 18), or even worse, RSS of the rogue one is more
similar to the record than its counterpart (location 3). The
former situation is actually normal when the sensing location
is on or near the perpendicular bisector of the line segment
between the location of rogue and legitimate AP. We owe the
latter situation to a bad record in the profile, which may be
caused by sensor error or the mixture of noise. Regardless
of such undistinguishable situations, CRAD can identify the
rogue by referring to the majority observation of the crowd, in
which ≥ 6 sensing locations are enough to detect an abnormal.
Note that the bad records would be calibrated to prevent the

spread of misleading effect on receiving a normal report.
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3) Distance between Rogue AP and Legitimate AP: We
switch on one rogue AP each time, and investigate the impact
of distance between rogue AP and legitimate AP on CRAD’s
effectiveness under the replacement attack model. We test two
distances separately under different crowd presence. During
each test, we change the crowd presence with the number of
sensing locations increasing from 1 to 30. For each presence
level, the test is repeated 60 times by randomly selecting the
sensing locations.

Fig. 5 illustrates the test results. The detection accuracy
(i.e. recall) in Fig. 5(a) is the ratio of the number of tests
in which the rogue AP is correctly identified over 60 times.
As expected, CRAD’s detection accuracy increases with more
sensing locations. For distance = 1m, we can obtain accuracy
of 0.9 when the number of locations reach half of the profile
size (i.e. 15). In contrast, for distance = 2m, the detection
accuracy reaches 0.9 with only 4 different locations, while
reaching 100% with around half of the profile size.

The precision in Fig. 5(b) is the ratio of the number of
actually true detection over all reported detections. A high
precision means that the ratio of Type I error is small, and
vice versa. Similar to the performance on detection accuracy,
CRAD’s precision is positive correlated to the crowd presence.
As we can see, the precision for distance = 2m is better than
distance = 1m for most reports. Specifically, when the rogue
is 1m away from its legitimate target, the precision keeps
fluctuating until the presence of around 15 sensing points. In
the other situation, only 7 sensing locations are required to
obtain a precision of 0.9, and the false alarm is nearly 0 with
more than 10 reporting locations.

Finally, we compute the F-Measure as 2·Accuracy·Recall
Accuracy+Recall in

Fig. 5(c). For both scenarios, F-measure is fairly high and
increases with more crowd reports. Meanwhile, CRAD’s F-
Measure regarding distance = 2m outperforms its perfor-
mance when distance = 1m by a wide margin.

The performance gap of CRAD under different rogue-
legitimate distances in Fig. 5 is due to the characteristic of
RSS correlation. In other words, RSS of the rogue AP and
its target AP observed at the same location become more and
more different as the distance between them increases. We
emphasize that distance = 1m (even 2m) is a special case,
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Fig. 5. The performance of CRAD against crowd presence (number of sensing locations) under different rogue and legitimate distances.

and it is actually not easy for a rogue to get that close without
being noticed. Even for this case, CRAD can successfully pick
out the imposter provided adequate crowd presence.

4) Attack Model: Two common forms of rogue APs are
considered in this work. Section IV-B3 discusses the impact of
distance of replacement attacks. In this part, we investigate the
performance of CRAD when dealing with coexistence attacks.
Here, we set up the imposter 2m away from the legitimate one.

As shown in Fig. 6, CRAD’s performance increases with
more locations involved, and can formally detect the potential
rogue without false alarms when enough crowd present (i.e. 15
different locations, about half of the profile size). Compared to
the replacement situation in Fig. 5(a), CRAD requires 6 more
(i.e. 10) presented devices to converge to the accuracy level
of 0.9. On the other hand, the precision of CRAD achieves
0.9 with 11 different sensing locations, also 3 more locations
than its counterpart requires in Fig. 5(b). We owe such
performance degradation to the mixture of RSS measurements
from legitimate AP and rogue AP at the receiver side in the
coexistence attack scenarios.
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Fig. 6. The performance of CRAD under the coexistence attack model.

V. CONCLUSION

In this paper, we proposed CRAD, a crowdsensing based
approach to detect rogue AP in any possible camouflage with
non-specialized hardware. CRAD exploits the RSS measure-
ments of crowd mobile devices to identify potential imposters.
A grid-based profiling method was designed to build profile
with crowdsensing collections, and a matching algorithm was
presented to detect abnormal samples based on the majority
voting. We conducted experiments with both a public dataset
and prototype implementation. CRAD is effective in detecting

rogue APs regarding detection accuracy and precision. Its
performance increases with more crowd presence.
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