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ABSTRACT | Driven by the visions of Internet of Things and

5G communications, the edge computing systems integrate

computing, storage, and network resources at the edge of

the network to provide computing infrastructure, enabling

developers to quickly develop and deploy edge applications.

At present, the edge computing systems have received wide-

spread attention in both industry and academia. To explore

new research opportunities and assist users in selecting suit-

able edge computing systems for specific applications, this

survey paper provides a comprehensive overview of the exist-

ing edge computing systems and introduces representative

projects. A comparison of open-source tools is presented

according to their applicability. Finally, we highlight energy

efficiency and deep learning optimization of edge computing

systems. Open issues for analyzing and designing an edge

computing system are also studied in this paper.
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I. I N T R O D U C T I O N

In the post-Cloud era, the proliferation of Internet of
Things (IoT) and the popularization of 4G/5G gradually
change the public’s habit of accessing and processing data
and challenge the linearly increasing capability of cloud
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Fig. 1. Categorization of edge computing systems.

computing. Edge computing is a new computing paradigm
with data processed at the edge of the network. Promoted
by the fast-growing demand and interest in this area,
the edge computing systems and tools are blooming, even
though some of them may not be popularly used right now.

There are many classification perspectives to distinguish
different edge computing systems. To figure out why edge
computing appears as well as its necessity, we pay more
attention to the basic motivations. Specifically, based
on different design demands, existing edge computing
systems can roughly be classified into three categories,
together yielding innovations on system architecture,
programming models, and various applications, as shown
in Fig. 1.

1) Push From Cloud: In this category, cloud providers
push services and computation to the edge in
order to leverage locality, reduce response time, and
improve user experience. Representative systems
include Cloudlet, Cachier, AirBox, and CloudPath.
Many traditional cloud computing service providers
are actively pushing cloud services closer to users,
shortening the distance between customers and
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cloud computing, so as not to lose market to mobile
edge computing (MEC). For example, Microsoft
launched AzureStack in 2017, which allows cloud
computing capabilities to be integrated into the ter-
minal, and data can be processed and analyzed on
the terminal device.

2) Pull From IoT: IoT applications pull services and
computation from the faraway cloud to the near
edge to handle the huge amount of data gener-
ated by IoT devices. Representative systems include
PCloud, ParaDrop, FocusStack, and SpanEdge.
Advances in embedded systems-on-a-chip (SoCs)
have given rise to many IoT devices that are power-
ful enough to run embedded operating systems and
complex algorithms. Many manufacturers integrate
machine learning (ML) and even deep learning capa-
bilities into IoT devices. Utilizing edge computing
systems and tools, IoT devices can effectively share
computing, storage, and network resources while
maintaining a certain degree of independence.

3) Hybrid Cloud-Edge Analytics: The integration of
advantages of cloud and edge provides a solution to
facilitate both global optimal results and minimum
response time in modern advanced services and
applications. Representative systems include Fire-
work and Cloud-Sea computing systems. Such edge
computing systems utilize the processing power of
IoT devices to filter, preprocess, and aggregate IoT
data while employing the power and flexibility of
cloud services to run complex analytics on those
data. For example, Alibaba Cloud launched its first
IoT edge computing product, LinkEdge, in 2018,
which expands its advantages in cloud computing,
big data, and artificial intelligence (AI) to the edge to
build a cloud/edge-integrated collaborative comput-
ing system; Amazon released Amazon Web Services
(AWS) Greengrass in 2017, which can extend AWS
seamlessly to devices so that devices can perform
local operations on the data they generate, while
data are transferred to the cloud for management,
analysis, and storage.

From a research point of view, this paper gives a detailed
introduction to the distinctive ideas and model abstrac-
tions of the aforementioned edge computing systems. Note
that the three categories are presented to clearly explain
the necessity of edge computing, and the classification is
not the main line of this paper. Specifically, we review
systems designed for architecture innovation first, then
introduce those for programming models and applications
(in Section II). In addition, some recent efforts for specific
application scenarios are also studied.

While we can find a lot of systems using edge computing
as the building block, there still lacks standardization to
such a paradigm. Therefore, a comprehensive and coor-
dinated set of foundational open-source systems/tools is
also needed to accelerate the deployment of IoT and
edge computing solutions. Some open-source edge com-

puting projects have been launched recently [e.g., Central
Office Re-architected as a Datacenter (CORD)]. As shown
in Fig. 1, these systems can support the design of both
architecture and programming models with useful appli-
cation programming interfaces (APIs). We review these
open-source systems with a comparative study on their
characteristics (in Section III).

When designing the edge computing system described
above, energy efficiency is always considered as one of the
major concerns as the edge hardware is energy-restriction.
Meanwhile, the increasing number of IoT devices is bring-
ing the growth of energy-hungry services. Therefore,
we also review the energy-efficiency-enhancing mecha-
nisms adopted by the state-of-the-art edge computing sys-
tems from the three-layer paradigm of edge computing (in
Section IV).

In addition to investigations from the system view,
we also look into the emerging techniques in the edge
computing system from the application view. Recently,
deep learning-based AI applications are widely used and
offloading the AI functions from the cloud to the edge
is becoming a trend. However, deep learning models are
known for being large and computationally expensive.
Traditionally, many systems and tools are designed to
run deep learning models efficiently on the cloud. As the
multilayer structure of deep learning, it is appropriate for
edge computing paradigm, and more of its functions can be
offloaded to the edge. Accordingly, this paper also studies
the new techniques recently proposed to support the deep
learning models at the edge (in Section V).

Our main contributions in this paper are as follows.
1) Reviewing existing systems and open-source projects

for edge computing by categorizing them from their
design demands and innovations. We study the tar-
gets, architecture, characteristics, and limitations of
the systems in a comparative way.

2) Investigating the energy-efficiency-enhancing mech-
anism for edge computing from the view of the
cloud, the edge servers, and the battery-powered
devices.

3) Studying the technological innovations dedicated to
deploying deep learning models on the edge, includ-
ing systems and toolkits, packages, and hardware.

4) Identifying challenges and open research issues of
edge computing systems, such as mobility support,
multiuser fairness, and privacy protection.

We hope this effort will inspire further research on edge
computing systems. The contents and their organization in
this paper are shown in Fig. 2. Besides the major four build-
ing blocks (Sections II–V), we also give a list of open issues
for analyzing and designing an edge computing system in
Section VI. This paper is concluded in Section VII.

II. E D G E C O M P U T I N G S Y S T E M S
A N D T O O L S

In this section, we review edge computing systems and
tools presenting architecture innovations, programming
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Fig. 2. Major building blocks and organization of this survey paper.

models, and applications, respectively. For each part,
we introduce work under the “push,” “pull,” and “hybrid”
demand in turn.

A. Cloudlet

In 2009, Carnegie Mellon University (CMU) proposed
the concept of Cloudlet [1], and the Open Edge computing
initiative was also evolved from the Cloudlet project [2].
Cloudlet is a trusted, resource-rich computer or cluster
of computers that are well-connected to the Internet
and available to nearby mobile devices. It upgrades the
original two-tier architecture “Mobile Device-Cloud” of
the mobile cloud computing to a three-tier architecture
“Mobile Device-Cloudlet-Cloud.” Meanwhile, Cloudlet can
also serve users like an independent cloud, making it a
“small cloud” or “data center (DC) in a box.” Although the
Cloudlet project is not proposed and launched in the name
of edge computing, its architecture and ideas fit those of
the edge computing and thus can be regarded as an edge
computing system.

The Cloudlet is in the middle layer of the three-tier
edge computing architecture and can be implemented on
a personal computer, low-cost server, or small cluster. It
can be composed of a single machine or small clusters
consisting of multiple machines. Like WiFi service access
points, a Cloudlet can be deployed at a convenient loca-
tion (such as a restaurant, a cafe, or a library). Multiple
Cloudlets may form a distributed computing platform,
which can further extend the available resources for mobile
devices [3]. As the Cloudlet is just one hop away from
the users’ mobile devices, it improves the QoS with low
communication delay and high bandwidth utilization.

In detail, Cloudlet has three main features as follows.

1) Soft State: Cloudlet can be regarded as a small
cloud computing center located at the edge of the
network. Therefore, as the server end of the appli-
cation, the Cloudlet generally needs to maintain
state information for interacting with the client.
However, unlike Cloud, Cloudlet does not main-
tain long-term state information for interactions,
but only temporarily caches some state information.

This reduces much of the burden of Cloudlet as a
lightweight cloud.

2) Rich Resources: Cloudlet has sufficient computing
resources to enable multiple mobile users to offload
computing tasks to it. In addition, Cloudlet also has
stable power supply so it does not need to worry
about energy exhaustion.

3) Close to Users: Cloudlets are deployed at those places
where both network distance and physical distance
are short to the end user, making it easy to control
the network bandwidth, delay, and jitter. In addition,
the physical proximity ensures that the Cloudlet and
the user are in the same context (e.g., the same
location), based on which customized services (e.g.,
the location-based service) could be provided.

To further promote Cloudlet, CMU built up an
open edge computing alliance, with Intel, Huawei,
and other companies [2], to develop standardized APIs
for Cloudlet-based edge computing platforms. Currently,
the alliance has transplanted OpenStack to the edge com-
puting platform, which enables distributed Cloudlet con-
trol and management via the standard OpenStack APIs [4].
With the recent development of the edge computing,
the Cloudlet paradigm has been widely adopted in various
applications, e.g., cognitive assistance system [5], [6], IoT
data analysis [7], and hostile environments [8].

Unlike the cloud, cloudlets are deployed on the edge of
the network and serve only nearby users. Cloudlet supports
application mobility, allowing devices to switch service
requests to the nearest cloudlet during the mobile process.
As shown in Fig. 3, Cloudlet supports for application
mobility relying on three key steps.

1) Cloudlet Discovery: Mobile devices can quickly dis-
cover the available Cloudlets around them and
choose the most suitable one to offload tasks.

2) Virtual Machine (VM) Provisioning: Configuring and
deploying the service VM that contains the server
code on the cloudlet so that it is ready to be used
by the client.

3) VM Handoff: Migrating the VM running the applica-
tion to another cloudlet.

Fig. 3. Cloudlet component overview and functions that support

application mobility. A: cloudlet discovery. B: VM provisioning.

C: VM handoff.
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Fig. 4. CloudPath architecture [9].

B. CloudPath

CloudPath [9] is an edge computing system proposed
by the University of Toronto. In such a system, diverse
resources such as computing and storage are provided
along the path from the user device to the cloud DC.
It supports on-demand allocation and dynamic deployment
of the multilevel architecture. The main idea of CloudPath
is to implement the so-called “path computing,” such that it
can reduce the response time and improve the bandwidth
utilization, compared with the conventional cloud comput-
ing.

As illustrated in Fig. 4, the bottom layer of CloudPath
is user devices, and the top layer is the cloud computing
DC. The system reassigns those tasks of the DCs along the
path (for path computing) to support different types of
applications, such as IoT data aggregation, data caching
services, and data processing services. Developers can
select an optimal hierarchical deployment plan for their
services by considering the factors such as cost, delay,
resource availability, and geographic coverage. Path com-
puting builds a multi-tiered architecture, and from the top
(traditional DC) to the bottom (user terminal equipment),
the device capability becomes weaker, while the number
of devices gets larger. On the premise of a clear separation
of computing and states, CloudPath extends the abstract
shared storage layer to all DC nodes along the path,
which reduces the complexity of third-party application
development and deployment and, meanwhile, keeps the
RESTful development style.

The CloudPath application consists of a set of short-cycle
and stateless functions that can be quickly instantiated
at any level of the CloudPath framework. Developers
either tag functions to specify where (such as edges,
cores, clouds, etc.) their codes run, or tag performance

requirements (such as response latency) to estimate the
running location. CloudPath does not migrate a running
function/module but supports service mobility by stopping
the current instance and re-starting a new one at the
expected location. Each CloudPath node usually consists
of the following six modules.

1) PathExecute: It implements a serverless cloud con-
tainer architecture that supports lightweight state-
less application functions/modules.

2) PathStore: It provides a distributed eventual con-
sistent storage system that transparently manages
application data across nodes.

3) PathRoute: It transmits the request to the most
appropriate CloudPath node, according to the infor-
mation such as user’s location in the network, appli-
cation preferences, or system status.

4) PathDeploy: It dynamically deploys and removes
applications on CloudPath nodes based on applica-
tion preferences and system policies.

5) PathMonitor: It provides real-time monitoring and
historical data analysis function to applications and
CloudPath nodes. It collects the metrics of other
CloudPath modules on each node through the Path-
Store and presents the data to users using web
pages.

6) PathInit: It is an initialization module in the top-level
DC node and can be used to upload applica-
tions/services to the CloudPath.

C. PCloud

PCloud [10] integrates the edge computing and stor-
age resources with those at the cloud to support seam-
less mobile services. The architecture of PCloud is

Fig. 5. PCloud architecture [10].
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shown in Fig. 5. Specifically, these resources are vir-
tualized through a special virtualization layer named
STRATUS [11] and form a distributed resource pool that
can discover new resources and monitor resource changes.
With the resource pool, the runtime mechanism is respon-
sible for resource application and allocation. Through a
resource description interface, the runtime mechanism
selects and combines appropriate resources based on the
requirements of specified applications. After the resources
are combined, it generates a new instance to provide
corresponding services for external applications, accord-
ing to the resource access control policy. (Note that the
computing resources of the newly generated instance may
come from multiple devices, which is equivalent to one
integrated computing device for the external applications.)
Thus, an application program is actually a combination
of services running on the PCloud instance. For example,
a media player application can be a combination of the
storage, decoding, and playing services. These services
could be local or remote but are transparent to the applica-
tions. Furthermore, the PCloud system also provides basic
system services, such as permission management and user
data aggregation, to control the resources access of other
users.

In the actual operation, the mobile application describes
the required resources to the PCloud through interfaces.
The PCloud will find out the optimal resource config-
uration by analyzing the description and the currently
available resources and then generates an instance to
provide corresponding services for the application. PCloud
integrates edge resources with cloud resources so that they
can complement each other. The abundant resources from
the cloud can make up for the lack of computing and
storage capabilities at the edge; meanwhile, due to the
physical proximity, edge devices can provide low-latency
services to the user that cloud cannot offer. In addition,
PCloud also enhances the availability of the entire system
and can choose alternate resources when encountering
network and equipment failures.

D. ParaDrop

ParaDrop [12] is developed by the WiNGS Laboratory
at the University of Wisconsin-Madison. It is an edge
computing framework that makes the computing/storage
resources close to mobile devices and data sources avail-
able to the third-party developers. Its goal is to bring
intelligence to the network edge in a friendly way.

ParaDrop upgrades the existing access point to an edge
computing system, which supports applications and ser-
vices like a normal server. To isolate applications under the
multitenacy scenario, ParaDrop leverages the lightweight
container virtualization technique. Fig. 6 shows that the
ParaDrop server (in the cloud) controls the deployment,
starting, and deletion of the applications. It provides a
group of APIs, via which the developer can monitor and
manage the system resources and configure the running

Fig. 6. ParaDrop system [12].

environment. The web UI is also provided, through which
the user can directly interact with the applications.

The design goals of ParaDrop include three aspects: mul-
titenacy, efficient resource utilization, and dynamic appli-
cation management. To achieve these goals, the container
technology is applied to manage the multitenacy resources
separately. As the resources of the edge devices are very
limited, compared with the VM, the container consumes
less resource and would be more suitable for delay sensi-
tive and high I/O applications. Moreover, as applications
running in the container, ParaDrop can easily control their
startup and revocation.

ParaDrop is mainly used for IoT applications, especially
IoT data analysis. Its advantages over traditional cloud
system can be summarized as follows: 1) since sensitive
data can be processed locally, it protects the users’ pri-
vacy; 2) WiFi access point is only one hop away from
the data source, leading to low network delay and stable
connection; 3) only user requested data are transmitted
to the equipment through the Internet, thus cutting down
the total traffic amount and saving the bandwidth of the
backbone network; 4) the gateway can obtain the location
information of the edge devices through radio signals
(e.g., the distance between devices and the location of
the specific device), which facilitates the location-aware
services; and 5) when edge devices cannot be connected
to the Internet, the edge service can still work.

E. SpanEdge

Streaming processing is one important type of appli-
cations in edge computing, where data are generated by
various data sources in different geographical locations
and continuously transmitted in the form of streams. Tra-
ditionally, all raw data are transmitted over the WAN to the
DC server, and stream processing systems, such as Apache
Spark and Flink, are also designed and optimized for one
centralized DC. However, this approach cannot effectively
handle the huge data generated by a lot of devices at the
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Fig. 7. SpanEdge architecture [13].

edge of the network, and the situation is even worse when
the applications require low latency and predictability.
SpanEdge [13] is a research project of the Royal Institute
of Technology in Sweden. It unifies the cloud central node
and the near-edge central node, reduces network latency in
WAN connections, and provides a programming environ-
ment that allows the program to run near the data source.
Developers can focus on developing streaming applications
without considering where the data sources are located
and distributed.

The DC in SpanEdge is composed of two levels: the
cloud DC is the first level and the edge DC (such as the
operator’s cloud, Cloudlet, or Fog) is the second level.
Partial streaming processing tasks run on the edge central
nodes to reduce latency and boost performance. SpanEdge
uses the master–worker architecture (as shown in Fig. 7)
with one manager and multiple workers. The manager
collects the streaming processing requests and assigns
tasks to the workers. Workers mainly consist of cluster
nodes whose primary responsibility is to execute tasks.
There are two types of workers: hub-worker (first level)
and spoke-worker (second level). The network transmis-
sion overhead and latency are related to the geographical
location and network connection status between workers.
The communication in SpanEdge is also divided into a sys-
tem management communication (worker–manager) and
a data transmission communication (worker–worker). Sys-
tem management communication aims to schedule tasks
between managers and workers, and data transmission
communication takes care of the data flow in each task.
Each worker has an agent that handles system manage-
ment operations, such as sending and receiving manage-
ment information, monitoring compute nodes to ensure
that they are running normally, and periodically sending
heartbeat messages to the manager to ensure immediate
recovery when the task fails.

SpanEdge allows developers to divide the tasks into
local ones and global ones. Local tasks should run on
the node near the data source and provide only part of

the required data; global tasks are responsible for further
processing the results of local tasks and aggregating all
results. SpanEdge creates a copy of the local task on each
spoke-worker, which has all corresponding data sources.
If the data are insufficient, the task is dispatched to the
hub-worker. The global task runs on a separate hub-
worker, and the scheduler selects the optimal hub-worker
based on the network delay (i.e., the distance from the
spoke-worker in the network topology).

F. Cloud-Sea Computing Systems

The Cloud-Sea Computing Systems project [14] is a
main research thrust of the Next Generation Information
and Communication Technology initiative [the National
Institute of Computer Technology (NICT), China, initia-
tive] and a 10-year strategic priority research initiative,
launched by the Chinese Academy of Science in 2012. The
NICT initiative aims to address the three major technology
challenges in the coming Zettabyte era: 1) improving
the performance per watt by 1000 times; 2) supporting
more applications from the human-cyber-physical ternary
computing; and 3) enabling transformative innovations in
devices, systems, and applications while without polluting
beneficial information technology ecosystems.

In the cloud-sea computing system, “cloud” refers to the
datacenters and “sea” refers to the terminal side (the client
devices, e.g., human-facing and physical world-facing sub-
systems). The design of the project can be depicted from
three levels: the overall systems architecture level, the dat-
acenter server and storage system level, and the processor
chip level. The project contains four research components:
a computing model called representational state transfer
(REST) 2.0 that extends REST [15] architectural style of
Web computing to cloud-sea computing, a three-tier stor-
age system architecture capable of managing ZBs of data,
a billion-thread datacenter server with high energy effi-
ciency, and an elastic processor aiming at energy efficiency
of one trillion operations per second per watt.

As shown in Fig. 8, the cloud-sea computing model
includes sea-side functions and cloud-side functions.

Fig. 8. Cloud-sea computing model.
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The sea zone is expanded from the traditional cloud
client, e.g., a home, an office, and a factory manufacturing
pipeline. There can be multiple client devices inside a sea
zone, and each device can be a human facing or physical
world facing. In a sea zone, there is a special device (like
a home datacenter or a smart TV set) designated as the
seaport for three purposes: 1) a gateway interfacing the sea
zone to the cloud; 2) a gathering point of information and
functionalities inside a sea zone; and 3) a shield protecting
security and privacy of the sea zone. A device inside a
sea zone does not communicate to the cloud directly, but
through the seaport, either implicitly or explicitly. The
SeaHTTP, a variant based on HTTP 2.0, is the widely used
protocol in sea zones of the cloud-sea system to connect
with the cloud.

The cloud-sea computing model has four distinct
features.

1) Ternary Computing via Sea Devices: Human and phys-
ical world entities interface and collaborate with
the cyberspace through the sea side. For example,
users can leverage a smartphone application to read
and control a sensor device in a home through an
Internet application service.

2) Cooperation With Locality: A specific network com-
puting system will partition its functions between
the sea side and the cloud side. Sea-side func-
tions include sensing, interaction, and local process-
ing, while cloud-side functions include aggregations,
request-response, and big data processing.

3) Scalability to ZB and Trillion Devices: This future
Net will collectively need to support trillions of sea
devices and to handle ZBs of data.

4) Minimal Extension to Existing Ecosystems: The REST
2.0 cloud-sea computing architecture attempts to
utilize existing Web computing ecosystems as much
as possible.

Overall, the cloud-sea computing model is proposed to
migrate the cloud computing function to the sea side, and
it focuses more on the devices at the “sea” side and the
data at the “cloud” side. Typical edge computing is more
generalized and may care about any intermediate com-
puting resources and network resources between the “sea”
and the “cloud.” The research studies in cloud-sea comput-
ing (e.g., energy-efficient computing and elastic processor
designing) are consultative for the edge computing.

G. Cachier and Precog

Cachier [16] and Precog [17] are two edge caching
systems that were proposed by the researchers from CMU
for image recognition. Recognition applications have strict
response time requirements, while the computation is huge
due to the model complexity and data set size. With edge
computing, we can leverage the computing resource of
the edge nodes to process the matching, so the network
delay can be reduced. Considering that edge nodes mainly
provide services to nearby users, the spatiotemporal

Fig. 9. Cachier system [16].

characteristics of service requests can be leveraged. From
the perspective of caching, the Cachier system proposes
that edge nodes can be used as “computable cache
devices,” which can cache recognition results, reduce
matching data set size, and improve response time. By ana-
lyzing the response delay model and requests’ character-
istics, the system can dynamically adjust the size of the
data set on the edge nodes according to the environment
factors, thus ensuring optimal response time.

Fig. 9 shows that Cachier consists of the recognizer mod-
ule, the optimizer module, and the offline analysis module.
The recognizer module is responsible for analyzing and
matching the received figures according to the cached
training data and model. If there is a match, the result
will be directly returned to the user; otherwise, the fig-
ure will be transmitted to the cloud for recognition. The
distribution estimator in the optimizer module can use the
maximum a posteriori estimation to predict the request
distribution. Second, given the classification algorithm and
training data set, the cache searching delay and the cache
accuracy can also be calculated by the offline analysis
module. At last, the profiler submodule is responsible for
estimating the network delay and cloud latency incurred
by cache misses. It measures and records the delay under
corresponding distance in real time and uses the moving
average filter to remove the noise data. By taking such
information into the delay expectation time model, Cachier
is able to calculate the optimal cache size and then adjusts
the cache on the edge nodes accordingly.

Precog is an extension of Cachier. The cached data are
not only on the edge nodes but also on the end devices that
are used for selection calculation in order to reduce the
image migration between the edge nodes and the cloud.
Based on the prediction model, Precog prefetches some of
the trained classifiers, uses them to recognize the images,
and cooperates with the edge nodes to efficiently complete
the tasks. Precog pushes computing capability to the end
device and leverages the locality and selectivity of the user
requests to reduce the last mile delay. For the end device,
if the cache system uses the same cache replacement policy
as the edge node applies, it will lead to a large number
of forced misses. For a single user, the device only has
the request information of the user, and usually, the user
will not identify the same object multiple times in the near
future. Therefore, Precog constructs a Markov model using
the request information from the edge node to describe
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Fig. 10. Precog system [17].

the relationship among the identified objects and then
predicts the potential future requests. Precog improves the
delay expectation time model by considering the network
state, device capabilities, and the prediction information
from edge nodes. The system architecture of Precog is
illustrated in Fig. 10. We can see that it is mainly com-
posed of the feature extraction module, the offline analysis
module, the optimizer module, and the profiler module.
The edge node is mainly responsible for the construction
of the Markov model. Based on the offline analysis results,
the Markov model prediction results, and the network
information provided by the profiler module, the optimizer
module determines the number of features to be extracted
as well as the data to be cached on the end device.

H. FocusStack

FocusStack [18] is developed by AT&T Labs, which
supports the deployment of complex applications on
a variety of potential IoT edge devices. Although the
resources, such as computing, power consumption, and
connectivity, are limited on edge devices, they have
the nature of mobility. Hence, it is very important
to have a system that can discover and organize
available edge resources. FocusStack is such a system
that can discover a set of edge devices with sufficient
resources, deploy applications, and run them accordingly.
Thus, the developers can focus more on the design of
applications than on how to find and track edge resources.

FocusStack consists of two parts (as shown in Fig. 11):
1) Geocast system, which provides location-based situ-
ational awareness (LSA) information and 2) OpenStack
extension (OSE), which is responsible for deploying, exe-
cuting, and managing the containers on the edge devices.
FocusStack builds a hybrid cloud of edge devices (con-
tainers) and DC servers (VMs). When a user initiates
a cloud operation through the FocusStack API (such as
instantiating a container), the LSA subsystem analyzes the
scope of the request based on the Geocast route and sends
a resource list of geographic locations to the target area

and waits for the response from (online) edge devices
that can satisfy the requirements. Then, the selected edge
device runs the corresponding OpenStack operations with
the help of the conductor module.

The situational-aware subsystem enables one group of
devices to monitor the survival status of each other, and
each device can update the sensing information of other
devices. The geoprocessing projection service is primarily
intended to pass requests and reply messages between
areas of interest, send out device control information (like
drones), and broadcast location-based information. The
service is based on a two-layer network, and data can be
transmitted over a dedicated WiFi network or the Internet.
The sender transmits the data packet to the georouter
server that tracks the location and metadata of each edge
device, and then, the data packet is sent to each device
(including edge devices and a cloud device running a
SAMonitor instance) in the specified area based on the
address. Location and connection statuses are maintained
by the georouting database (GRDB). The GCLib is a soft-
ware framework that provides data acquisition services,
and it runs on edge devices and cloud applications that
use SAMonitor. Any application or service in need of
the state of the device in the area needs a SAMonitor
component to communicate with the LSA subsystem. The
application server makes a request to SAMonitor through
the FocusStack API, and then, SAMonitor builds a real-time
graph of the current area and returns a list of available
edge devices. The regional graph is sent to the conductor
in the OSE, which is responsible for checking whether
the devices are capable of running the tasks, whether
the predefined policy rules are met, and so on. Then,
the available edge device list is submitted to the applica-
tion server and the server selects devices to be used. OSE
manages and deploys the program through the OpenStack
Nova API. The edge devices run a custom version of Nova
Compute to interact with the local Docker to manage the
container. The container on the edge devices supports all
OpenStack services, including access to virtual networks
and application-based granularity configuration.

Fig. 11. FocusStack system [18].
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Fig. 12. AirBox architecture [19].

I. AirBox

AirBox [19] is a secure, lightweight, and flexible edge
function (EF) system developed by the Georgia Institute
of Technology. It supports fast and flexible EF loading and
provides service security and user privacy protection. The
EF in AirBox is defined as a service that can be loaded on
an edge node, and the software stack that supports the EF
is named EF Platform (EFP).

As shown in Fig. 12, the AirBox consists of two parts: the
AB console and the AB provisioner. The back-end service
manager deploys and manages the EF on the edge nodes
through the AB console. The AB provisioner that runs at
the edge is responsible for providing dynamic EF seam-
lessly. The EFs are implemented through system-level con-
tainers with minimal constraints on developers. Security is
enhanced by using the hardware security mechanisms like
Intel SGX. AirBox provides centrally controlled backend
services in discovering edge nodes and registering them.
The AB console is a web-based management system, which
activates the docker startup process on the edge node with
AB provisioner.

To ensure the security of the AirBox, the EF consists
of a trusted part and an untrusted part. The untrusted
part is responsible for all network and storage interactions.
Based on OpenSGX APIs, AirBox provides four extensible
APIs to implement secure communication and storage:
remote attestation, remote authentication, sealed storage,
and EF-defined interface. AirBox supports a variety of edge
features such as aggregation, buffering, and caching.

J. Firework

Wayne State University’s MIST Lab proposes a program-
ming model for edge computing—Firework [20]. In the
model of Firework, all services/functions are represented
in a data view of data sets and functions, which can be
the results of processing with their own data or secondary
processing with other services/data sets. A system con-
sisting of nodes that apply the Firework model is called
the Firework system. In the Firework system, instead of
dividing nodes into edge nodes and cloud ones, they are
all considered as Firework nodes. Through the mutual
invocation of the Firework nodes, the data can be dis-
tributed and processed on each node. Along the path of

data transmission, the edge nodes perform a series of
calculations upon the data, thus forming a “computational
flow.” The beginning of the computational flow could be
user terminals, edge servers close to the user, edge servers
close to the cloud, or cloud nodes.

In the Firework system, the data processing service is
split into multiple subservices, and the scheduling of the
data processing is performed at the following two layers.

1) Same Subservice Layer Scheduling: A Firework node
can cooperate with another for the same subservices
in the surrounding area to achieve optimal response
time. For idle Firework nodes, the system can sched-
ule subservice programs onto them, such that a
cluster providing a specific subservice is formed
dynamically and complete the service faster.

2) Computational Flow Layer Scheduling: Firework
nodes along the computational flow can cooperate
with each other and dynamically schedule execution
nodes to achieve an optimal solution. For example,
depending on the states of the network, the system
can choose Firework nodes for service providing
based on the nodes’ locations (e.g., selecting those
closest to the users).

As shown in Fig. 13, Firework divides the nodes into
computing nodes and managers, depending on the type of
service those nodes provide. In general, each node with the
Firework model has three modules: the job management

Fig. 13. Example of a Firework instance that consists of

heterogeneous computing platforms [20].
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Table 1 Summary of Edge Computing Systems

module, the actuator management module, and the service
management module.

1) Service Management Module: This type of module is
designed for the management of data views. It pro-
vides interfaces to update the data view, as well as
relevant programs for data processing.

2) Job Management Module: This type of module is
responsible for the scheduling, monitoring, and eval-
uation of the task executions. When the local com-
puting resources are insufficient, the module can
look into the node list and the data view and make
resource rescheduling at the same subservice layer.
When the subservice is running, the module can also
provide necessary monitoring information and give
feedback to other upstream and downstream nodes
for flow layer scheduling.

3) Actuator Management Module: This type of mod-
ule is mainly responsible for managing all hard-
ware resources and hosting the execution processes
of different tasks. With the help of this module,
the device, running environment and the upper layer

functions, could be decoupled, so that the nodes of
the Firework system are not limited to a certain type
of devices, and the data processing environment is
not limited to a certain type of computing platform.

K. Other Edge Computing Systems

The edge systems introduced above depict some typical
and basic innovations on the exploitation of edge analyt-
ics for highly responsive services. The previous systems
are used in general cases, which lay the foundation of
further development. We highlight that, in addition to
these efforts, there are many other edge systems tuned
for a series of different application scenarios. In Table 1,
we briefly summarize the general and application-specific
edge systems, which leverage different kinds of edge nodes
to serve diverse end devices using either a hybrid or edge
only computation architecture.

Compared to both on-board computation and
cloud-based computation, edge computing can provide
more effective data analytics with a lower latency for the
moving vehicles [21]. In [21], an open full-stack edge
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computing-based platform OpenVDAP is proposed for
the data analytics of connected and autonomous vehicles
(CAVs). OpenVDAP proposes systematic mechanisms,
including varied wireless interfaces, to utilize the
heterogeneous computation resources of nearby CAVs,
edge nodes, and the cloud. For optimal utilization of
the resources, a dynamic scheduling interface is also
provided to sense the status of available resources and to
offload divided tasks in a distributed way for computation
efficiency. SafeShareRide is an edge-based attack detection
system addressing in-vehicle security for ridesharing
services [22]. Its three detection stages leverage both the
smartphones of drivers and passengers as edge computing
platform to collect multimedia information in vehicles.
Specifically, speech recognition and driving behavior
detection stages are first carried out independently to
capture in-vehicle danger, and the video capture and
uploading stage is activated when abnormal keywords
or dangerous behaviors are detected to collect videos
for cloud-based analysis. By using such an edge-cloud
collaborative architecture, SafeShareRide can accurately
detect attacks in-vehicle with low bandwidth demand.

Another scenario that edge computing can play an
important role is the IoT devices management in the smart
home environment. Wherein, the privacy issue of the wide
range of home devices is a popular topic. In [23], the Vig-
ilia system is proposed to harden smart home systems
by restricting the network access of devices. A default
access deny policy and an API-granularity device access
mechanism for applications are adopted to enforce access
at the network level. Run time checking implemented in
the routers only permits those declared communications,
thus helping users secure their home-devices. Similarly,
the HomePad system in [24] also proposes to execute IoT
applications at the edge and introduces a privacy-aware
hub to mitigate security concerns. Homepad allows users
to specify privacy policy to regulate how applications
access and process their data. Through enforcing applica-
tions to use explicit information flow, Homepad can use
Prolog rules to verify whether applications have the ability
to violate the defined privacy policy at install time.

Edge computing has also been widely used in the
analysis of video stream. LAVEA is an edge-based system
built for latency-aware video analytics nearby the end
users [25]. In order to minimize the response time, LAVEA
formulates an optimization problem to determine which
part of tasks to be offloaded to the edge computer and
uses a task queue prioritizer to minimize the makespan.
It also proposes several task placement schemes to enable
the collaboration of nearby edge nodes, which can further
reduce the overall task completion time. VideoEdge is a
system that provides the most promising video analytics
implementation across a hierarchy of clusters in the city
environment [26]. A three-tier computation architecture is
considered with deployed cameras and private clusters as
the edge and remote server as the cloud. The hierarchical
edge architecture is also adopted in [27] and is believed to

be promising in processing live video stream at scale. Tech-
nically, VideoEdge searches thousands of combinations of
computer vision components implementation, knobs, and
placement and finds a configuration to balance the accu-
racy and resource demands using an efficient heuristic.
In [28], a video analytics system for autonomous drones is
proposed, where edge computing is introduced to save the
bandwidth. Portable edge computers are required here to
support dynamic transportation during a mission. Totally,
four different video transmission strategies are presented
to build an adaptive and efficient computer vision pipeline.
In addition to the analytics work (e.g., object recognition),
the edge nodes also train filters for the drones to avoid the
uploading of the uninteresting video frames.

In order to provide flexible virtual reality (VR) on
untethered smartphones, edge computing can be useful to
transport the heavy workload from smartphones to their
nearby edge cloud [29]. However, the rendering task of
the panoramic VR frames (i.e., 2 GB/s) will also saturate
the individual households as common edge in the house.
In [29], the multiuser virtual reality (MUVR) system is
designed to support multiuser VR with efficient bandwidth
and computation resources utilization. MUVR is built on
a basic observation that the VR frames being rendered
and transmitted to different users are highly redundant.
For computation efficiency, MUVR maintains a two-level
hierarchical cache for invariant background at the edge
and the user end to reuse frames whenever necessary.
Meanwhile, MUVR transmits a part of all frames in full and
delivers the distinct portion for the rest frames to further
reduce the transmission costs.

III. O P E N-S O U R C E E D G E
C O M P U T I N G P R O J E C T S

Besides the designed edge computing systems for spe-
cific purposes, some open-source edge computing projects
have also been launched recently. The Linux Founda-
tion published two projects: EdgeX Foundry in 2017 and
Akraino Edge Statck [30] in 2018. The Open Network
Foundation (ONF) launched a project, namely, CORD
[31]. The Apache Software Foundation published Apache

Edgent. Microsoft published Azure IoT Edge in 2017 and
announced it as an open source in 2018.

Among them, CORD and Akraino Edge Stack focus on
providing edge cloud services; EdgeX Foundry and Apache
Edgent focus on IoT and aim to solve problems, which
bring difficulties to practical applications of edge comput-
ing in IoT; Azure IoT Edge provides hybrid cloud-edge
analytics, which helps to migrate cloud solutions to IoT
devices.

A. CORD

CORD is an open-source project of ONF initi-
ated by AT&T and is designed for network opera-
tors. Current network infrastructure is built with closed
proprietary-integrated systems provided by network equip-
ment providers. Due to the closed property, the network
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Fig. 14. Hardware architecture of CORD.

capability cannot scale up and down dynamically. The lack
of flexibility results in inefficient utilization of the com-
puting and networking resources. CORD plans to recon-
struct the edge network infrastructure to build datacenters
with software-defined network (SDN) [32], network func-
tion virtualization (NFV) [33], and Cloud technologies.
It attempts to slice the computing, storage, and network
resources so that these datacenters can act as clouds at the
edge, providing agile services for end users.

CORD is an integrated system built from commodity
hardware and open-source software. Fig. 14 shows the
hardware architecture of CORD [31]. It uses commodity
servers that are interconnected by a Fabric of White-box
switches. White-box switch [34] is a component of SDN
switch, which is responsible to regulate the flow of data
according to SDN controller. These commodity servers
provide computing, storage resources, and the fabric of
switches are used to build the network. This switching
fabric is organized to a spine-leaf topology [35], a kind
of flat network topology structure, which adds a horizon-
tal network structure parallel to the trunk longitudinal
network structure and then adds corresponding switching
network on the horizontal structure. Comparing to the
traditional three-tier network topology, it can provide scal-
able throughput for greater East-to-West network traffic,
that is, traffic coming from network diagram drawings that
usually depict local area network (LAN) traffic horizon-
tally. In addition, specialized access hardware is required
to connect subscribers. The subscribers can be divided into
three categories for different use cases, mobile subscribers,
enterprise subscribers, and residential subscribers. Each
category demands different access hardware due to dif-
ferent access technologies. In terms of software, Fig. 15
shows the software architecture of CORD [31]. Based on
the servers and the fabric of switches, OpenStack provides
with IaaS capability for CORD, it manages the compute,
storage, and networking resources as well as creating VMs
and virtual networks. Docker is used to run services in
containers for isolation. Open Network Operating Sys-
tem (ONOS) is a network operating system that is used
to manage network components like the switching fabric
and provide communication services to end-users. XOS

Fig. 15. Software architecture of CORD.

provides a control plane to assemble and compose services.
Other software projects provide component capabilities,
for example, vRouter (Virtual Router) provides virtual
routing functionality.

The edge of the operator network is a sweet spot
for edge computing because it connects customers with
operators and is close to customers’ applications as data
sources. CORD takes edge computing into consideration
and moves to support edge computing as a platform to pro-
vide edge cloud services (from the released version 4.1).
CORD can be deployed into three solutions: mobile CORD
(M-CORD), residential CORD (R-CORD), and enterprise
CORD (E-CORD) for different use cases. M-CORD focuses
on the mobile network, especially 5G network, and it plans
to disaggregate and virtualize cellular network functions
to enable services to be created and scaled dynamically.
This agility helps to provide multiaccess edge services for
mobile applications. For those use cases like driverless cars
or drones, users can rent the edge service to run their edge
applications. Similarly, R-CORD and E-CORD are designed
to be agile service delivery platforms but for different
users, residential, and enterprise users, relatively.

So far, the deployment of CORD is still under test
among network operators, and more research is needed
to combine CORD with various edge applications.

B. Akraino Edge Stack

Akraino Edge Stack, initiated by AT&T and now hosted
by Linux Foundation, is a project to develop a holis-
tic solution for edge infrastructure so as to support
high-availability edge cloud services [30]. An open-source
software stack, as the software part of this solution,
is developed for network carrier to facilitate optimal
networking and workload orchestration for underlying
infrastructure in order to meet the need of edge computing
such as low latency, high performance, high availability,
scalability, and so on.

To provide a holistic solution, Akraino Edge Stack has a
wide scope from the infrastructure layer to the application
layer. Fig. 16 [30] shows the scope with three layers.
In the application layer, Akraino Edge Stack wants to
create a virtual network function (VNF) ecosystem and
calls for edge applications. The second layer consists of
middleware that supports applications in the top layer.
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Fig. 16. Akraino Edge Stack’s scope.

In this layer, Akraino Edge Stack plans to develop Edge
API and framework for interoperability with third-party
Edge projects such as EdgeX Foundry. At the bottom layer,
Akraino Edge Stack intends to develop an open-source
software stack for the edge infrastructure in collaboration
with upstream communities. It interfaces with and max-
imizes the use of existing open-source projects such as
Kubernetes, OpenStack, and so on. Akraino Edge Stack
provides different edge use cases with blueprints, which
are declarative configurations of the entire stack including
hardware, software, point of delivery, and so on [30]. The
application domains of these blueprints start from Telco
industry and are expected to be applied in more domains
like enterprise and industrial IoT. Now, Akraino Edge Stack
has put forward several blueprints such as micro-MEC and
edge media processing. Micro-MEC intends to develop a
new service infrastructure for smart cities, which enables
developing services for smart city and has high data capac-
ity for citizens. Edge media processing intends to develop
a network cloud to enable real-time media processing and
edge media AI analytics with low latency.

As an emerging project, Akraino Edge Stack has been
taken to execution since August 2018. Thus, more research
needs to be done with the development of this project.

C. EdgeX Foundry

EdgeX Foundry is a standardized interoperability frame-
work for IoT edge computing, whose sweet spots are edge
nodes such as gateways, hubs, and routers [36]. It can
connect with various sensors and devices via different
protocols, manage them and collect data from them, and
export the data to a local application at the edge or the
cloud for further processing. EdgeX is designed to be
agnostic to hardware, CPU, operating system, and appli-
cation environment. It can run natively or run in Docker
containers.

Fig. 17 [36] shows the architecture of EdgeX Foundry.
“South side” at the bottom of the figure includes all IoT
objects, and the edge of the network that communicates
directly with those devices, sensors, actuators, and other
IoT objects to collect the data from them. Relatively,

“north side” at the top of the figure includes the cloud
(or enterprise system) where data are collected, stored,
aggregated, analyzed, and turned into information, and
the part of the network that communicates with the Cloud.
EdgeX Foundry connects these two sides regardless of the
differences in hardware, software, and network. EdgeX
tries to unify the manipulation method of the IoT objects
from the south side to a common API so that those objects
can be manipulated in the same way by the applications of
the north side.

EdgeX uses a device profile to describe a south side
object. A device profile defines the type of the object,
the format of data that the object provides, the format
of data to be stored in EdgeX, and the commands used
to manipulate this object. Each device profile involves a
device service, which is a service that converts the format
of the data and translates the commands into instructions
that IoT objects know how to execute. EdgeX provides
SDK for developers to create device services so that it can
support any combination of device interfaces and protocols
by programming.

EdgeX consists of a collection of microservices, which
allows services to scale up and down based on device
capability. These microservices can be grouped into four
service layers and two underlying augmenting system
services, as depicted in Fig. 17. The four service layers
include device services layer, core services layer, supporting
services layer, and export services layer, respectively; the
two underlying augmenting system services are system
management and security, respectively. Each of the six
layers consists of several components and all components
use a common restful API for configuration.

1) Device Services Layer: This layer consists of device
services. According to the device profiles, device
service layer converts the format of the data, sends
them to core services layer, and translates the com-
mand requests from the core services layer.

2) Core Services Layer: This layer consists of four com-
ponents: core data, command, metadata, and reg-
istry and configuration. Core data is a persistence
repository as well as a management service. It stores
and manages the data collected from the south side
objects. Command is a service to offer the API for
command requests from the north side to device
services. Metadata is a repository and management
service for metadata about IoT objects. For exam-
ple, the device profiles are uploaded and stored in
metadata. Registry and configuration provide a cen-
tralized management of configuration and operating
parameters for other microservices.

3) Supporting Services Layer: This layer is designed to
provide edge analytics and intelligence [33]. Now,
the rules engine, alerting and notification, schedul-
ing, and logging microservices are implemented.
A target range of data can be set to trigger a specific
device actuation as a rule and rules engine helps to
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Fig. 17. Architecture of EdgeX Foundry [36].

realize the rule by monitoring the incoming data.
Alerting and notifications can send notifications or
alerts to another system or person by email, REST
callback, or other methods when an urgent actuation
or a service malfunction happens. The scheduling
module can set up a timer to regularly clean up the
stale data. Logging is used to record the running
information of EdgeX.

4) Export Services Layer: This layer connects EdgeX
with north side and consists of client registration
and export distribution. Client registration enables
clients like a specific cloud or a local application
to register as recipients of data from core data.
Export distribution distributes the data to the clients
registered in client registration.

5) System Management and Security: System manage-
ment provides management operations, including
installation, upgrade, starting, stopping, and mon-
itoring, as EdgeX is scalable and can be deployed
dynamically. Security is designed to protect the data
and command of IoT objects connected with EdgeX
Foundry.

EdgeX is designed for the user cases dealing with mul-
titudes of sensors or devices, such as automated factories,
machinery systems, and a lot of other cases in IoT. Now,
EdgeX Foundry is in the rapid upgrading phase, and more
features will be added in future releases. An EdgeX UI is in
development as a web-based interface to add and manage
the devices.

D. Apache Edgent

Apache Edgent, which was known as Apache Quarks
previously, is an Apache Incubator project at present. It is
an open-source programming model for lightweight run-
time data analytics, used in small devices such as routers

and gateways at the edge. Apache Edgent focuses on data
analytics at the edge, aiming to accelerate the development
of data analysis.

As a programming model, Edgent provides API to build
edge applications. Fig. 18 illustrates the model of the
Edgent applications. Edgent uses a topology as a graph
to represent the processing transformation of streams of
data, which are abstracted to a Tstream class. A connector
is used to get streams of data from external entities such as
sensors and devices in physical world or to send streams of
data to back-end systems like a cloud. The primary API of
Edgent is responsible for data analysis. The streams of data
can be filtered, split, transformed, or processed by other
operations in a topology. Edgent uses a provider to act
as a factory to create and execute topologies. To build an
Edgent application, users should first get a provider, then
create a topology and add the processing flow to deal with
the streams of data, and finally, submit the topology. The
deployment environments of Edgent are Java 8, Java 7,
and Android.

Fig. 18. Model of the Edgent applications.
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Fig. 19. Diagram of Azure IoT Edge.

Edgent provides APIs for sending data to back-end sys-
tems and now supports message queuing telemetry trans-
port (MQTT), IBM Watson IoT Platform, Apache Kafka,
and custom message hubs. Edgent applications analyze the
data from sensors and devices and send the essential data
to the back-end system for further analysis. For IoT use
cases, Edgent helps to reduce the cost of transmitting data
and provide local feedback.

Edgent is suitable for use cases in IoT such as intelligent
transportation, automated factories, and so on. In addition,
the data in Edgent applications are not limited to sensor
readings, and they can also be files or logs. Therefore,
Edgent can be applied to other use cases. For example,
it can perform a local data analysis when embedded in
application servers, where it can analyze error logs without
impacting network traffic [37].

E. Azure IoT Edge

Azure IoT Edge, provided by Microsoft Azure as a cloud
service provider, tries to move cloud analytics to edge
devices. These edge devices can be routers, gateways,
or other devices, which can provide computing resources.
The programming model of Azure IoT Edge is the same as
that of other Azure IoT services [38] in the cloud, which
enables the user to move their existing applications from
Azure to the edge devices for lower latency. The conve-
nience simplifies the development of edge applications.
In addition, Azure services such as Azure functions, Azure
ML, and Azure stream analytics can be used to deploy
complex tasks on the edge devices such as ML, image
recognition, and other tasks about AI.

Azure IoT Edge consists of three components: IoT Edge
modules, IoT Edge runtime, and a cloud-based interface,
as depicted in Fig. 19. The first two components run on
edge devices, and the last one is an interface in the cloud.
IoT Edge modules are containerized instances running the
customer code or Azure services. IoT Edge runtime man-
ages these modules. The cloud-based interface is used to
monitor and manage the former two components, in other
words, monitor and manage the edge devices.

IoT Edge modules are the places that run specific appli-
cations as the units of execution. A module image is a
docker image containing the user code. A module instance,

as a Docker container, is a unit of computation running
the module image. If the resources at the edge devices are
sufficient, these modules can run the same Azure services
or custom applications as in the cloud because of the same
programming model. In addition, these modules can be
deployed dynamically as Azure IoT Edge is scalable.

IoT Edge runtime acts as a manager on the edge devices.
It consists of two modules: IoT Edge hub and IoT Edge
agent. IoT Edge hub acts as a local proxy for IoT Hub,
which is a managed service, and a central message hub
in the cloud. As a message broker, IoT Edge hub helps
modules to communicate with each other and transport
data to IoT Hub. IoT Edge agent is used to deploy and
monitor the IoT Edge modules. It receives the deployment
information about modules from IoT Hub, instantiates
these modules, and ensures they are running, for example,
restarts the crashed modules. In addition, it reports the
status of the modules to the IoT hub.

IoT Edge cloud interface is provided for device manage-
ment. By this interface, users can create edge applications,
then send these applications to the device, and finally,
monitor the running status of the device. This monitoring
function is useful for use cases with massive devices, where
users can deploy applications to devices on a large scale
and monitor these devices.

A simple deployment procedure for applications is that:
users choose an Azure service or write their own code
as an application, build it as an IoT Edge module image,
and deploy this module image to the edge device with the
help of the IoT Edge interface. Then, the IoT Edge receives
the deployment information, pulls the module image, and
instantiates the module instance.

Azure IoT Edge has wide application areas. Now, it has
application cases on intelligent manufacturing, irrigation
system, drone management system, and so on. It is worth
noting that Azure IoT Edge is open-source but the Azure
services such as Azure functions, Azure ML, and Azure
stream are charged.

F. Comparative Study

We summarize the features of the above-mentioned
open-source edge computing systems in Table 2. Then,
we compare them from different aspects in Table 2,
including the main purpose of the systems, application
area, deployment, target user, virtualization technology,
system characteristic, limitations, scalability, and mobil-
ity. We believe that such comparisons give better under-
standings of the current open-source edge computing
systems.

1) Main Purpose: The main purpose shows the target
problem that a system tries to fix, and it is a key factor for
us to choose a suitable system to run edge applications.
As an interoperability framework, EdgeX Foundry aims
to communicate with any sensor or device in IoT. This
ability is necessary for edge applications with data from
various sensors and devices. Azure IoT Edge offers an
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Table 2 Comparison of Open Edge System Characteristics

efficient solution to move the existing applications from
cloud to edge and to develop edge applications in the same
way with the cloud applications. Apache Edgent helps to
accelerate the development process of data analysis in
IoT use cases. CORD aims to reconstruct the current edge
network infrastructure to build datacenters so as to provide
agile network services for end-user customers. From the
view of edge computing, CORD provides with multiaccess
edge services. Akraino edge stack provides an open-source
software stack to support high-availability edge clouds.

2) Application Area: EdgeX Foundry and Apache Edgent
both focus on IoT edge, and EdgeX Foundry is geared
toward communication with various sensors and devices,
while Edgent is geared toward data analysis. They are suit-
able for intelligent manufacturing, intelligent transporta-
tion, and smart city where various sensors and devices
generate data all the time. Azure IoT Edge can be thought
as the expansion of Azure Cloud. It has an extensive
application area but depends on the computation resources
of edge devices. In addition, it is very convenient to
deploy edge applications about AI such as ML and image
recognition to Azure IoT Edge with the help of Azure
services. CORD and Akraino Edge Stack support edge
cloud services, which have no restriction on the application
area. If the edge devices of users do not have sufficient
computing capability, these two systems are suitable for
users to run resource-intensive and interactive applications
in connection with the operator network.

3) Deployment: As for the deployment requirements,
EdgeX Foundry, Apache Edgent, and Azure IoT Edge are
deployed in edge devices such as routers, gateways, switch-
ers, and so on. Users can deploy EdgeX Foundry by them-
selves, add or reduce microservices dynamically, and run
their own edge applications. Differently, users need the
help of cloud-based interface to deploy Azure IoT Edge and

develop their edge applications. CORD and Akraino Edge
Stack are designed for network operators, who need fabric
switches, access devices, network cards, and other related
hardware apart from compute machines. Customers have
no need to think about the hardware requirements and
management process of the hardware, but to rent the
services provided by the network operators like renting a
cloud service instead of managing a physical server.

4) Target User: Although these open-source systems
focus on edge computing, their target users are not the
same. EdgeX Foundry, Azure IoT Edge, and Apache Edgent
have no restriction on target users. Therefore, every devel-
oper can deploy them into local edge devices such as gate-
ways, routers, and hubs. Differently, CORD and Akraino
Edge Stack are created for network operators because they
focus on edge infrastructure.

5) Virtualization Technology: At present, virtualization
technologies are widely used. VM technology can provide
better management and higher utilization of resources,
stability, scalability, and other advantages. Container tech-
nology can provide services with isolation and agility but
with negligible overhead, which can be used in edge
devices [39]. Using OpenStack and Docker as software
components, CORD and Akraino Edge Stack use both of
these two technologies to support edge cloud. Different
edge devices may have different hardware and software
environments. For those edge systems that are deployed on
edge devices, a container is a good technology for services
to keep independence in different environments. There-
fore, EdgeX Foundry and Azure IoT Edge choose to run
as Docker containers. As for Edgent, Edgent applications
run on Java virtual machine (JVM).

6) System Characteristic: System characteristics show
the unique features of the system, which may help users to
develop, deploy, or monitor their edge applications. It will
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save a lot of workload and time if making good use of these
characteristics. EdgeX Foundry provides a common API to
manage the devices, and this brings great convenience
to deploying and monitoring edge applications in a large
scale. Azure IoT Edge provides powerful Azure services to
accelerate the development of edge applications. Apache
Edgent provides a series of functional APIs for data ana-
lytics, which lowers the difficulty and reduces the time for
developing edge analytic applications. CORD and Akraino
Edge Stack provide with multiaccess edge services on edge
cloud. We only need to keep a connection with the operator
network, and we can apply for these services without the
need to deploy an edge computing system on edge devices
by ourselves.

7) Limitation: This section discusses the limitation of
the latest version of them to deploy edge applications. The
latest version of EdgeX Foundry has not provided a pro-
grammable interface in its architecture for developers to
write their own applications. Although EdgeX allows us to
add custom implementations, it demands more workload
and time. As for Azure IoT Edge, although it is open-source
and free, Azure services are chargeable as commercial soft-
ware. For Apache Edgent, it is lightweight and it focuses on
only data analytics. As for CORD and Akraino Edge Stack,
these two systems demand a stable network between data
sources and the operators because the edge applications
are running on the edge of the operator network rather
than local devices.

8) Scalability: Increasing applications at edge make the
network architecture more complex and the application
management more difficult. Scalability is one major con-
cern in edge computing. Among these edge computing
systems, Azure IoT Edge, CORD, and Akraino Edge Stack
apply Docker technology or VM technology to support
users to scale up or down their applications efficiently
by adding or deleting module images. EdgeX Foundry is
also a scalable platform that enables users to dynamically
add or reduce microservices to adapt to the actual needs.
However, Apache Edgent is not scalable enough because
every Edgent application is a single Java application and
performance cannot be changed dynamically.

9) Mobility: For EdgeX Foundry, Apache Edgent, and
Azure IoT Edge, once the applications are executed on
some edge devices, they cannot be dynamically migrated
to other devices. CORD and Akraino Edge Stack, deployed
in the telecom infrastructure, support mobile edge services
through mobile access network like 4G/5G. The mobility of
these systems meets the need for cases such as unmanned
cars and drones.

10) Scenarios: We discuss the choice of open-source
tools from the perspective of the following three scenarios,
as shown in Fig. 20.

In the first scenario, suppose IoT edge applications
are running on LAN, and the local enterprise system is
regarded as a back-end system with no need for third-party

Fig. 20. Choice of open-source tools in different scenarios.

clouds. In this case, EdgeX Foundry or Apache Edgent is
favorable because they enable users to build and control
their own back-end system without being bound to any
specific cloud platform. Furthermore, for the sake of man-
aging and controlling edge devices on a large scale, EdgeX
Foundry is a better choice for good device management
capability. If considering the data analysis, Apache Edgent
is preferable to EdgeX Foundry. It provides a programming
model to accelerate the development of edge analytic
applications and a set of powerful APIs for data processing.

In the second scenario, suppose the cloud services
push to the edge of the network to improve the quality.
In this case, Auzre IoT Edge provides a convenient way
for developers to migrate the applications from the cloud
to the edge devices and to leverage third-party high-
value services or functions when developing edge systems.
In addition, AWS IoT Greengrass and Link IoT Edge,
which are published by Amazon and Alibaba Cloud, are
good choices as the competitive projects. More specifically,
Azure IoT Edge provides Azure services such as Azure
functions, Azure stream analytics, and Azure ML. AWS IoT
Greengrass can run AWS Lamda functions and ML models
that are created, trained, and optimized in the cloud. Link
IoT Edge provides function compute and other functions.
Based on the application requirements, a suitable system
could be chosen among them by taking account the func-
tions they provide.

In the third scenario, suppose the users expect to directly
leverage third-party services to deploy edge applications
without any hardware or software system locally. In this
case, edge systems such as CORD and Akraino Edge Stack
are suitable. The users could choose one of them depen-
dent on their application requirements. These systems are
deployed by telecom operators. Telecom operators are also
the providers of network services. Thus, when there exist
special network requirements of edge applications, these
systems could satisfy the requirements. For example, edge
computing applications on unmanned vehicles or drones
need the support of wireless telecom networks (such as
4G/5G); in this case, a MEC service provided by these
systems is a good choice.

In addition to the systems described above, there are
other emerging open-source projects. Device management
edge, as part of Mbed IoT Platform published by the
Advanced RISC Machine (ARM), is responsible for edge

PROCEEDINGS OF THE IEEE 17



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Liu et al.: Survey on Edge Computing Systems and Tools

Fig. 21. Three-layer edge computing paradigm from a power

source view.

computing and provides the ability to access, manage,
and control edge devices. KubeEdge, released by Huawei,
provides edge nodes with native containerized application
orchestration capabilities.

IV. E N H A N C I N G E N E R G Y E F F I C I E N C Y
O F E D G E C O M P U T I N G S Y S T E M S

In the design of an edge computing system, energy con-
sumption is always considered as one of the major con-
cerns and evaluated as one of the key performance metrics.
In this section, we review the energy-efficiency-enhancing
mechanisms adopted by the state-of-the-art edge comput-
ing systems, from the view of the top cloud layer, middle
edge server layer, and bottom device layer, respectively
(the three-layer paradigm is illustrated by Fig. 21).

A. At the Top Cloud Layer

For cloud computing, a centralized dc can com-
prise thousands of servers and thus consume enormous
energy [40]. As an alternative to the cloud computing,
does the edge/fog computing paradigm consume more or
less energy? Different points of view have been given:
some claim that decentralized data storage and process-
ing supported by the edge computing architecture are
more energy efficient [41], [42], while some others show
that such distributed content delivery may consume more
energy than that of the centralized way [43].

Jalali et al. [44] give a thorough energy analysis for
applications running over the centralized DC (i.e., under
cloud mode) and decentralized nano DCs (i.e., under fog
mode), respectively. The results indicate that the fog mode
may be with a higher energy efficiency, depending on
several system design factors (e.g., type of application,
type of access network, and ratio of active time), and those
applications that generate and distribute a large amount of
data in end-user premises result in the best energy saving
under the fog mode.

B. At the Middle Edge Server Layer

At the middle layer of the edge computing paradigm,
energy is also regarded as an important aspect, as the

edge servers can be deployed in a domestic environment
or powered by the battery (e.g., a desktop or a portable
WiFi router, as shown in Fig. 21). Thus, to provide a
higher availability, many power management techniques
have been applied to limit the energy consumption of edge
servers while still ensuring their performances. We give a
review of two major strategies used at the edge server layer
in recent edge computing systems.

1) Low-Power System Design and Power Manage-
ment: In [45], the tactical cloudlet is presented and its
energy consumption when performing VM synthesis is
evaluated particularly, under different cloudlet provision-
ing mechanisms. The results show that the largest amount
of energy is consumed by: 1) VM synthesis due to the large
payload size and 2) on-demand VM provisioning due to
the long application-ready time. Such results lead to the
high energy efficiency policy: combining cached VM with
cloudlet push for cloudlet provision.

A service-oriented architecture for fog/edge comput-
ing, Fog Data, is proposed and evaluated in [46]. It is
implemented with an embedded computer system and
performs data mining and data analytics on the raw
data collection from the wearable sensors (in telehealth
applications). With Fog Data, orders of magnitude data
are reduced for transmission, thus leading to enormous
energy saving. Furthermore, Fog Data is with a low power
architecture design and even consumes much less energy
than that of a Raspberry Pi.

In [47], a performance-aware orchestrator for Docker
containers, named DockerCap, is developed to meet the
power consumption constraints of the edge server (fog
node). Following the observe-decide-act loop structure,
DockerCap is able to manage container resources at
run-time and provide soft-level power capping strategies.
The experiments demonstrate that the obtained results
with DockerCap are comparable to that from the power
capping solution provided by the hardware (Intel RAPL).

An energy-aware edge computer architecture is
designed to be portable and usable in the fieldwork
scenarios in [48]. Based on the architecture, a high-
density cluster prototype is built using the compact
general-purpose commodity hardware. Power
management policies are implemented in the prototype to
enable the real-time energy awareness. Through various
experiments, it shows that both the load balance strategies
and cluster configurations have big impacts on the system
energy consumption and responsiveness.

2) Green-Energy-Powered Sustainable Computing: Dual-
energy sources are employed to support the running of
a fog computing-based system in [49], where solar power
is utilized as the primary energy supply of the fog nodes.
A comprehensive analytic framework is presented to min-
imize the long-term cost of energy consumption. Mean-
while, the framework also enables an energy-efficient data
offloading (from fog nodes to the cloud) mechanism to
help provide a high quality of service.
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In [50], a rack-scale green-energy-powered edge
infrastructure, in situ server system using renewable
energy (InSURE) is implemented for data preprocessing
at the edge. InSURE can be powered by standalone
(solar/wind) power and with batteries as the energy
backup. Meanwhile, an energy buffering mechanism and
a joint spatiotemporal power management scheme are
applied to enable efficient energy flow control from the
power supply to the edge server.

C. At the Bottom Device Layer

As a well-recognized fact, the IoT devices in edge com-
puting usually have strict energy constraints, e.g., limited
battery life and energy storage. Thus, it remains a key
challenge to power a great number (can up to tens of
billions) of IoT devices at the edge, especially for those
resource-intensive applications or services [51]. We review
the energy-saving strategies adopted at the device layer of
the edge computing diagram. Specifically, we go through
three major approaches to achieving high energy efficiency
in different edge/fog computing systems.

1) Computation Offloading to Edge Servers or Cloud:
As a natural idea to solve the energy poverty problem,
computation offloading from the IoT devices to the edge
servers or cloud has been long investigated [52]–[54].
It was also demonstrated that, for some particular applica-
tions or services, offloading tasks from IoT devices to more
powerful ends can reduce the total energy consumption
of the system since the task execution time on powerful
servers or cloud can be much shortened [55]. Although
it increases the energy consumption of (wireless) data
transmission, the tradeoff favors the offloading option as
the computational demand increases [56].

Having realized that the battery life is the primary
bottleneck of handheld mobile devices, Cuervo et al. [54]
present the mobile assistance using infrastructure (MAUI),
an architecture for mobile code offloading and remote
execution. To reduce the energy consumption of the smart-
phone program, MAUI adopts a fine-grained program
partitioning mechanism and minimizes the code changes
required at the remote server or cloud. The ability of MAUI
in energy reduction is validated by various experiments
upon macrobenchmarks and microbenchmarks. The results
show that MAUI’s energy saving for a resource-intensive
mobile application is up to one order of magnitude, also
with a significant performance improvement.

Like MAUI [54], Chun et al. [56] design and implement
CloneCloud, a system that helps partition mobile appli-
cation programs and performs strategically offloading for
fast and elastic execution at the cloud end. As the major
difference to MAUI, CloneCloud involves less programmer
help during the whole process and only offloads particular
program partitions on demand of execution, which further
speeds up the program execution. Evaluation shows that
CloneCloud can improve the energy efficiency of mobile

applications (along with their execution efficiency) by
20 times. Similarly, in [57], by continuous updates of
software clones in the cloud with a reasonable overhead,
the offloading service can lead to energy reduction at the
mobile end by a factor. For computation-intensive appli-
cations on resource-constrained edge devices, their execu-
tions usually need to be offloaded to the cloud. To reduce
the response latency of the image recognition applica-
tion, Precog is presented, which has been introduced in
Section II-G. With the on-device recognition caches, Precog
much reduces the amount of images offloading to the edge
server or cloud, by predicting and prefetching the future
images to be recognized.

2) Collaborated Devices Control and Resource Manage-
ment: For energy saving of the massive devices at the
edge, besides offloading their computational tasks to more
powerful ends, there is also a great potential via sophis-
ticated collaboration and cooperation among the devices
themselves. Particularly, when the remote resources from
the edge server or cloud are unavailable, it is critical
and nontrivial to complete the edge tasks while without
violating the energy constraint.

PCloud is presented in [10] to enhance the capability
of individual mobile devices at the edge. By seamless
using available resources from the nearby devices, PCloud
forms a personal cloud to serve end users whenever the
cloud resources are difficult to access, where device par-
ticipation is guided in a privacy-preserving manner. The
authors show that, by leveraging multiple nearby device
resources, PCloud can much reduce the task execution
time as well as energy consumption. For example, in the
case study of neighborhood watch with face recognition,
the results show a 74% reduction in energy consumption
on a PCloud versus on a single-edge device. Similar to
PCloud, the concept of mobile device cloud (MDC) is
proposed in [58], where computational offloading is also
adopted among the mobile devices. It shows that the
energy efficiency (gain) is increased by 26% via offloading
in MDC. Liu et al. [59] propose an adaptive method to
dynamically discovery available nearby resource in hetero-
geneous networks and perform automatic transformation
between centralized and flooding strategies to save energy.

As current long-term evolution (LTE) standard is not
optimized to support a large simultaneous access of
IoT devices, Abdelwahab et al. [60] propose an improved
memory replication architecture and protocol, REPLISON,
for computation offloading of the massive IoT devices
at the edge. REPLISON improves the memory replication
performance through an LTE-optimized protocol, where
device-to-device (D2D) communication is applied as an
important supporting technology (to pull memory replicas
from IoT devices). The total energy consumption of REPLI-
SON is generally worse than the conventional LTE scenario
as it needs more active devices. However, the energy
consumed per device during a single replicate transmission
is much less. With further evaluation results, it shows that

PROCEEDINGS OF THE IEEE 19



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Liu et al.: Survey on Edge Computing Systems and Tools

Table 3 Comparison of Deep learning Systems on Edge

REPLISOM has an energy advantage over the conventional
LTE scenarios as long as the size of replica is sufficiently
small.

For IoT devices distributed at the edge,
Abdelwahab et al. [61] leverage the software agents
running on the IoT devices to establish an integrated
multiagent system (MAS). By sharing data and information
among the mobile agents, edge devices are able to
collaborate with each other and improve the system
energy efficiency in executing distributed opportunistic
applications. Upon the experimental platform with
100 sensor nodes and 20 smartphones as edge devices,
the authors show the great potential of data transmission
reduction with MAS. This leads to a significant energy
saving, from 15% to 66%, under different edge computing
scenarios. As another work applying data reduction
for energy saving, CAROMM [62] employs a change
detect technique (LWC algorithm) to control the data
transmission of IoT devices while maintaining the data
accuracy.

V. D E E P L E A R N I N G O P T I M I Z AT I O N
AT T H E E D G E

In the past decades, we have witnessed the burgeoning of
ML, especially deep learning-based applications that have
changed human being’s life. With complex structures of
hierarchical layers to capture features from raw data, deep
learning models have shown outstanding performances
in those novel applications, such as machine translation,
object detection, and smart question and answer systems.

Traditionally, most deep learning based applications are
deployed on a remote cloud center, and many systems and
tools are designed to run deep learning models efficiently
on the cloud. Recently, with the rapid development of
edge computing, the deep learning functions are being
offloaded to the edge. Thus, it calls for new techniques to
support the deep learning models at the edge. This section
classifies these technologies into three categories: systems
and toolkits, deep learning packages, and hardware.

A. Systems and Toolkits

Building systems to support deep learning at the edge
is currently a hot topic for both industry and academy.
There are several challenges when offloading state-of-the-
art AI techniques on the edge directly, including com-
puting power limitation, data sharing and collaborating,
and mismatch between edge platform and AI algorithms.
To address these challenges, OpenEI is proposed as an
Open Framework for Edge Intelligence [63]. OpenEI is a

lightweight software platform to equip edges with intelli-
gent processing and data sharing capability. OpenEI con-
sists of three components: a package manager to execute
the real-time deep learning task and train the model
locally, a model selector to select the most suitable model
for different edge hardware, and a library including a
RESTFul API for data sharing. The goal of OpenEI is that
any edge hardware will have intelligent capability after
deploying it.

In the industry, some top-leading tech-giants have pub-
lished several projects to move the deep learning functions
from the cloud to the edge. Except Microsoft published
Azure IoT Edge that has been introduced in Section III-E,
Amazon and Google also build their services to support
deep learning on the edge. Table 3 summarizes the features
of the systems, which will be discussed in the following.

AWS has published IoT Greengrass ML Inference [64]
after IoT Greengrass. AWS IoT Greengrass ML Inference is
a software to support ML inferences on local devices. With
AWS IoT Greengrass ML Inference, connected IoT devices
can run AWS Lambda functions and have the flexibility to
execute predictions based on those deep learning models
created, trained, and optimized in the cloud. AWS IoT
Greengrass consists of three software distributions: AWS
IoT Greengrass Core, AWS IoT Device SDK, and AWS
IoT Greengrass SDK. Greengrass is flexible for users as
it includes a prebuilt TensorFlow, Apache MXNet, and
Chainer package, and it can also work with Caffe2 and
Microsoft Cognitive Toolkit.

Cloud IoT Edge [65] extends Google Cloud’s data
processing and ML to edge devices by taking advantages of
Google AI products, such as TensorFlow Lite and Edge ten-
sor processing unit (TPU). Cloud IoT Edge can either run
on Android or Linux-based operating systems. It is made up
of three components: edge connect ensures the connection
to the cloud and the updates of software and firmware,
edge ML runs ML inference by TensorFlow Lite, and edge
TPU specific designed to run TensorFlow Lite ML models.
Cloud IoT Edge can satisfy the real-time requirement for
the mission-critical IoT applications as it can take advan-
tages of Google AI products (such as TensorFlow Lite and
Edge TPU) and optimize the performance collaboratively.

B. Deep Learning Packages

Many deep learning packages have been widely used
to deliver the deep learning algorithms and deployed
on the cloud DCs, including TensorFlow [66], Caffe [67],
PyTorch [68], and MXNet [69]. Due to the limitations of
computing resources at the edge, the packages designed
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for the cloud are not suitable for edge devices. Thus,
to support data processing with deep learning models
at the edge, several edge-based deep learning frame-
works and tools have been released. In this section,
we introduce TensorFlow Lite, Caffe2, PyTorch, MXNet,
CoreML [70], and TensorRT [71], whose features are sum-
marized in Table 4.

TensorFlow Lite [72] is TensorFlow’s lightweight solu-
tion that is designed for mobile and edge devices. Tensor-
Flow is developed by Google in 2016 and becomes one of
the most widely used deep learning frameworks in cloud
DCs. To enable low-latency inference of on-device deep
learning models, TensorFlow Lite leverages many opti-
mization techniques, including optimizing the kernels for
mobile apps, prefused activations, and quantized kernels
that allow smaller and faster (fixed-point math) models.

Facebook published Caffe2 [73] as a lightweight, mod-
ular, and scalable framework for deep learning in 2017.
Caffe2 is a new version of Caffe, which is first developed
by UC Berkeley AI Research (BAIR) and community con-
tributors. Caffe2 provides an easy and straightforward way
to play with the deep learning and leverage community
contributions of new models and algorithms. Comparing
with the original Caffe framework, Caffe2 merges many
new computation patterns, including distributed compu-
tation, mobile, reduced precision computation, and more
nonvision use cases. Caffe2 supports multiple platforms
that enable developers to use the power of GPUs in the
cloud or at the edge with cross-platform libraries.

PyTorch [68] is published by Facebook. It is a python
package that provides two high-level features: tensor
computation with strong GPU acceleration and deep
neural networks built on a tape-based autograd sys-
tem. Maintained by the same company (Facebook),
PyTorch and Caffe2 have their own advantages. PyTorch
is geared toward research, experimentation, and trying
out exotic neural networks, while caffe2 supports more
industrial-strength applications with a heavy focus on the
mobile. In 2018, Caffe2 and PyTorch projects merged into
a new one, named PyTorch 1.0, would combine the user
experience of the PyTorch frontend with scaling, deploy-
ment, and embedding capabilities of the Caffe2 backend.

MXNet [69] is a flexible and efficient library for deep
learning. It was initially developed by the University of
Washington and CMU, to support convolutional neural
network (CNN) and long short-term memory (LSTM) net-
works. In 2017, Amazon announced MXNet as its choice
of the deep learning framework. MXNet places a special

emphasis on speeding up the development and deploy-
ment of large-scale deep neural networks. It is designed
to support multiple different platforms (either cloud plat-
forms or the edge ones) and can execute training and
inference tasks. Furthermore, other than the Windows,
Linux, and OSX operating systems based devices, it also
supports the Ubuntu Arch64 and Raspbian ARM-based
operating systems.

CoreML [70] is a deep learning framework optimized
for on-device performance at memory footprint and power
consumption. Published by Apple, users can integrate
the trained ML model into Apple products, such as Siri,
Camera, and QuickType. CoreML supports not only deep
learning models but also some standard models such as
tree ensembles, SVMs, and generalized linear models. Built
on the top of low-level technologies, CoreML aims to make
full use of the CPU and GPU capability and ensure the
performance and efficiency of data processing.

The platform of TensorRT [71] acts as a deep learn-
ing inference to run the models trained by TensorFlow,
Caffe, and other frameworks. Developed by NVIDIA com-
pany, it is designed to reduce the latency and increase
the throughput when executing the inference task on
NVIDIA GPU. To achieve computing acceleration, TensorRT
leverages several techniques, including weight and acti-
vation precision calibration, layer and tensor fusion, ker-
nel autotuning, dynamic tensor memory, and multistream
execution.

Considering different performances of the packages and
the diversity of the edge hardware, it is challenging to
choose a suitable package to build edge computing sys-
tems. To evaluate the deep learning frameworks at the
edge and provide a reference to select appropriate com-
binations of package and edge hardware, pCAMP [74] is
proposed. It compares the packages’ performances (with
respect to the latency, memory footprint, and energy)
resulting from five edge devices and observes that no
framework could win over all the others at all aspects. It
indicates that there is much room to improve the frame-
works at the edge. Currently, developing a lightweight,
efficient, and high-scalability framework to support diverse
deep learning modes at the edge cannot be more important
and urgent.

In addition to these single-device-based frameworks,
more researchers focus on distributed deep learning mod-
els over the cloud and edge. DDNN [75] is a distrib-
uted deep neural network architecture across cloud, edge,
and edge devices. DDNN maps the sections of a deep
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neural network onto different computing devices, to mini-
mize communication and resource usage for devices and
maximize the usefulness of features extracted from the
cloud.

Neurosurgeon [76] is a lightweight scheduler that can
automatically partition DNN computation between mobile
devices and datacenters at the granularity of neural
network layers. By effectively leveraging the resources in
the cloud and at the edge, neurosurgeon achieves low
computing latency, low energy consumption, and high
traffic throughput.

C. Hardware System

The hardware designed specifically for deep learn-
ing can strongly support edge computing. Thus, we fur-
ther review relevant hardware systems and classify
them into three categories: field-programmable gate
array (FPGA)-based hardware, GPU-based hardware, and
application-specific integrated circuit (ASIC).

1) FPGA-Based Hardware: An FPGA is an integrated
circuit and can be configured by the customer or designer
after manufacturing. FPGA-based accelerators can achieve
high-performance computing with low energy, high paral-
lelism, high flexibility, and high security [77].

Zhang et al. [78] implement a CNN accelerator on a
VC707 FPGA board. The accelerator focuses on solving
the problem that the computation throughput does not
match the memory bandwidth well. By quantitatively
analyzing the two factors using various optimization tech-
niques, the authors provide a solution with better per-
formance and lower FPGA resource requirement, and
their solution achieves a peak performance of 61.62 giga
operations per second (GOPS) under a 100-MHz working
frequency.

Following the above work, Qiu et al. [79] propose a
CNN accelerator designed upon the embedded FPGA,
Xilinx Zynq ZC706, for large-scale image classifica-
tion. It presents an in-depth analysis of state-of-the-art
CNN models and shows that convolutional layers are
computational-centric and fully-connected layers are
memory-centric. The average performances of the CNN
accelerator at convolutional layers and the full CNN
are 187.8 and 137.0 GOPS under a 150-MHz work-
ing frequency, respectively, which outperform previous
approaches significantly.

An efficient speech recognition engine (ESE) is designed
to speed up the predictions and save energy when applying
the deep learning model of LSTM. ESE is implemented in
a Xilinx XCKU060 FPGA operating at 200 MHz. For the
sparse LSTM network, it can achieve 282 GOPS, corre-
sponding to 2.52 tera operations per second (TOPS) on
the dense LSTM network. In addition, energy efficiency
improvements of 40× and 11.5× are achieved, respectively,
compared with the CPU- and GPU-based solution.

2) GPU-Based Hardware: GPU can execute parallel pro-
grams at a much higher speed than CPU, which makes

it fit for the computational paradigm of deep learning
algorithms. Thus, to run deep learning models at the edge,
building the hardware platform with GPU is a must choice.
Specifically, NVIDIA Jetson TX2 and DRIVE PX2 are two
representative GPU-based hardware platforms for deep
learning.

NVIDIA Jetson TX2 [80] is an embedded AI computing
device, which is designed to achieve low latency and high
power efficiency. It is built upon an NVIDIA Pascal GPU
with 256 CUDA cores, an HMP Dual Denver CPU, and a
Qualcomm ARM CPU. It is loaded with 8 GB of memory
and 59.7 GB/s of memory bandwidth and the power is
about 7.5 W. The GPU is used to execute the deep learning
task, and CPUs are used to maintain general tasks. It also
supports the NVIDIA Jetpack SDK that includes libraries
for deep learning, computer vision, GPU computing, and
multimedia processing.

NVIDIA DRIVE PX [81] is designed as the AI supercom-
puter for autonomous driving. The architecture is available
in a variety of configurations, from the mobile processor
operating at 10 W to a multichip AI processors delivering
320 TOPS. It can fuse data from multiple cameras, as well
as lidar, radar, and ultrasonic sensors.

3) ASIC: ASIC is the integrated circuit that supports cus-
tomized design for a particular application rather than the
general-purpose use. ASIC is suitable for the edge scenario
as it usually has a smaller size, lower power consumption,
higher performance, and higher security than many other
circuits. Researchers and developers design ASIC to meet
the computing pattern of deep learning.

DianNao family [82] is a series of hardware accel-
erators designed for deep learning models, including
DianNao, DaDianNao, ShiDianNao, and PuDianNao. They
investigate the accelerator architecture to minimize mem-
ory transfers as efficiently as possible. Different from
other accelerators in DianNao family, ShiDianNao [83]
focuses on image applications in embedded systems, which
are widely used in edge computing scenarios. For the
CNN-based deep learning models, it provides a computing
speed 30× faster than that of NVIDIA K20M GPU, with a
body area of 4.86 mm2 and a power of 320 mW.

Edge TPU [84] is Google’s purpose-built ASIC for edge
computing. It augments Google’s Cloud TPU and Cloud IoT
to provide an end-to-end infrastructure and facilitates the
deployment of customers’ AI-based solutions. In addition,
Edge TPU can combine the custom hardware, open soft-
ware, and state-of-the-art AI algorithms to achieve high
performance with a small physical area and low power
consumption.

VI. K E Y D E S I G N I S S U E S

The edge computing system manages various resources
along the path from the cloud center to end devices, shield-
ing the complexity and diversity of hardware and helping
developers quickly design and deploy novel applications.
To fully leverage the advantages, we discuss the following
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key issues that need to be paid attention when analyzing
and designing a new edge computing system.

1) Mobility Support: Mobility support has two aspects:
user mobility and resource mobility. User mobility refers
to how to automatically migrate the current program state
and necessary data when the user moves from one edge
node coverage domain to another so that the service
handover is seamless. Currently, Cloudlet and CloudPath
provide service migration through terminating/finishing
the existing task and starting a new VM/instance in the tar-
get edge node. Fine-grain migration and target edge node
prediction are not supported. Resource mobility refers to:
1) how to dynamically discover and manage available
resources, including both the long-term resources and
short-term ones and 2) when some edge devices are dam-
aged how the system can be resumed as soon as possible
with replacements. For example, PCloud and FocusStack
support edge devices dynamic join and leave with no task
running. Intelligent dynamic resource management is still
required for edge computing systems.

2) Multiuser Fairness: For edge devices with limited
resources, how to ensure the fairness of multiuser usage,
especially for the shared resources and rare resources,
is important. For example, a smartphone made up of
various sensors and computing resources can act as an
edge node to serve multiple users. However, as the smart-
phone has limited battery life, it is a problem to fairly
allocate resources when receiving many requests. The
resource competition is more intense, the requests are
coming from different irrelevant tasks, and it is hard
to decide who should use the resource with only local
information. In addition, the unfairness can be used as an
attack strategy to make the critical task resource hungry,
which may lead to the main task failure. The existing
edge computing systems do not pay much attention to
the multiuser fairness, the basic solution (bottom-line) is
to provide resource isolation, and the users only get what
the edge node promised when it accepts the request. More
fairness strategies require system support, like related task
status updates, and so on.

3) Privacy Protection: Unlike cloud computing, edge
devices can be privately owned, such as gateway devices
for smart home systems. When other users use such edge
devices, obtain their data, and even take control of them,
how to ensure the owner’s privacy and guest users’ data
privacy is important. AirBox is a lightweight flexible EF
system, which leverages hardware security mechanism
(e.g, Intel SGX) to enhance system security. Other systems
have not paid much attention to privacy and security.
Existing cloud security approaches can be applied with
the consideration of the resource limitation. Enhancing
resource isolation, setting up privilege management and
access control policies can be potential directions to solve
the privacy problem.

4) Developer Friendliness: The system ultimately pro-
vides hardware interaction and basic services for upper
level applications. How to design interactive APIs, program
deployment module, resource application and revocation,
and so on are the key factors for the system to be widely
used. Therefore, to design an edge computing system,
we should think from an application developer’s perspec-
tive. Specifically, to provide effective development and
deployment services is a good idea to help improve the
ecosystem of the edge computing system. For instances,
EdgeX Foundry and Apache Edgent provide APIs to man-
age devices and analyze data, respectively. ParaDrop sup-
ports monitoring devices and application status through
developer APIs and provides a web UI for users to man-
age/configure gateway as well as deploy applications to
devices.

5) Multidomain Management and Cooperation: Edge
computing involves multiple types of resources, each of
which may belong to a different owner, for example,
the smart home gateways and sensors of the house owner,
networks resources and base stations from the Internet
service providers (ISP), and traffic cameras owned by the
government. How to access these resources and organize
them according to the requirements of application and
services, especially in emergency situations, is a problem
that the edge computing system needs to consider. Existing
research studies assume we have permission to use various
devices belongs to different owners. In the initial stage,
systems focus on the functionality perspective rather than
implementation issues like price model. With the develop-
ing of edge computing, the real deployment issues should
be solved before we enjoy all the benefits.

6) Cost Model: In cloud computing, the corresponding
VM can be allocated based on the resource requested by
the user, and the cost model can be given according to
the resource usage. In edge computing, an application may
use resources from different owners. Thus, how to mea-
sure resource usage, calculate overall overhead, and give
an appropriate pricing model are crucial problems when
deploying an edge computing system. Generally, edge
computing systems focus on how to satisfy the resource
requirements of various services and applications, some of
them pay more attention to the energy consumption due to
the nature of mobile nodes, and more complex overhead
are not considered.

7) Compatibility: Currently, specialized edge computing
applications are still quite a few. For example, ParaDrop
applications require an additional XML configuration file
to specify the resource usage requirements and SpanEdge
needs developers to divide/configure tasks into local tasks
and global tasks. Common applications are not directly
supported to run in edge systems. How to automatically
and transparently convert existing programs to the edge
version and conveniently leverages the advantages of edge
computing are still open problems. The compatibility
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should be considered in the edge system design, specif-
ically how to adapt traditional applications to the new
architecture and realize the basic functions so that they
can run successfully, deserving further exploration and
development.

VII. C O N C L U S I O N

Edge computing is a new paradigm that jointly migrates
the capability of networking, computation, and storage
from the remote cloud to the user sides. Under the context
of IoT and 5G, the vision of edge computing is promising
in providing smarter services and applications with better

user experiences. The recently proposed systems and tools
on edge computing generally reduce the data processing
and transmission overhead and improve the efficiency and
efficacy of mobile data analytics. In addition, the inte-
gration of edge computing and deep learning techniques
further fosters the research on edge-based intelligence
services. This paper introduced the representative systems
and open-source projects for edge computing, presented
several energy-efficiency-enhancing strategies for perfor-
mance consideration and technologies for deploying deep
learning models at the edge, and suggested a few research
directions during the system design and analysis.
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