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A B S T R A C T

The graph stream has recently arisen in many interactive scenarios. Characterizing with large volume and
high dynamic, graph streams are known to be difficult for high-speed summary and analysis, especially
provided with limited resource availability. Existing solutions mainly use sketch-based methods to estimate
the weight of items (e.g., Count-Min Sketch) and preserve the underlying graph structure information (e.g.,
TCM). Unfortunately, these solutions neither support complex graph-based queries nor achieve efficient real-
time queries. In view of these limitations, we design DMatrix, a novel 3-dimensional graph sketch to facilitate
fast and accurate queries in graph stream. Both structural query and weight-based estimation are supported
with DMatrix. Through the integration of representative key reservation and majority voting, DMatrix can
effectively narrow the error bounds of queries with real-time response efficiency. Both theoretical analysis
and experimental results confirm that our solution is superior in accuracy and efficiency comparing with the
state-of-the-art.
1. Introduction

The last decade has seen the massive adoption of graph streams for
modeling complex structured data in interactive applications such as
network traffic and social networks. As a time-evolving data sequence,
a graph stream can continuously depict entities (e.g., social media
users) and the connections among entities (e.g., interactions or friend-
ships) and serves as the building block for a broad spectrum of services,
including network anomaly detection [1], community discovery [2],
service usage analysis [3] and etc.

Yet, analyzing large graph streams in real-time is in fact rather
challenging due to its sheer volume and high changing velocity [4].
For example, it is reported that each link in large ISPs or data centers
handles around millions of packets per second [5]. Such situations are
worse when facing small and limited memory. As a result, traditional
data structures (e.g., adjacency lists) are not appropriate for storing the
graph streams.

Fortunately, fast and approximated answers, instead of the exact
ones, are expected in the context of data streaming applications. To
meet such requirements, sketches are widely used to generate synopses
in a space-saving way for approximate weight estimation [6,7], finding
heavy-hitters and mining top-k items [8–10]. Nevertheless, a direct
adaptation of the aforementioned classical sketches over graph streams
will lose the underlying structural information in the graph data.
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We illustrate by an example that the limitations of classical sketches
in various types of queries. Fig. 1 shows a sample graph stream and
the sketches. The classical sketches shown in Fig. 1(b) and (c) can
only be used as either a ‘‘node sketch’’ or an ‘‘edge sketch’’ which
treats node labels (e.g., 𝐴 and 𝐵) and edge labels (e.g., 𝐴𝐵 and 𝐶𝐷)
as hash keys, respectively. A node sketch maps each node to a bucket
using the hash function ℎ𝑛𝑜𝑑𝑒, which can summarize the weight of the
outgoing traffic of each node as shown in Fig. 1(b). Similarly, an edge
sketch maps each edge into a bucket that can estimate the approx-
imate weight of each edge from the buckets as shown in Fig. 1(c).
However, the classical sketches neither support node- and edge-weight
queries simultaneously nor provide the structural information of the
graph stream. In view of these limitations, graph sketch techniques
(e.g., TCM [11] and gMatrix [12]) are proposed to summarizing graph
streams in a generalized way as illustrate in Fig. 1(d). For example, the
graph sketch maps the source node 𝐵 and the destination node 𝐶 to
the first row (i.e., ℎ𝑔𝑟𝑎𝑝ℎ(𝐵) = 1) and the first column (i.e., ℎ𝑔𝑟𝑎𝑝ℎ(𝐶) =
1), respectively. The weight of the edge 𝐵𝐶 is estimated by the red
bucket, i.e., 2. Meanwhile, the outgoing traffic weight of node 𝐵 can be
obtained by summing up the values in the first row i.e., 4. In addition,
the graph sketch can also answer the subgraph weight query (e.g., the
sum of the weight in subgraph that containing nodes 𝐴, 𝐵, and 𝐶.) and
the path reachability query (e.g., whether node 𝐷 reaches node 𝐸 via
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Fig. 1. A sample graph stream and the sketches. The red boxes highlight the nodes
and edges we are concerned with and their mapping positions.

edges whose weight is larger than a threshold) that give the underlying
structural information of the graph stream.

Although graph sketches can provide multi-dimensional queries,
the estimation accuracy and query efficiency of these solutions are
poor, which would be critical for timely and accurate data monitoring
over graph stream. We are thus motivated to propose a modified
graph sketch, called DMatrix, for real-time summary and analysis of
graph stream by jointly considering estimation accuracy and query effi-
ciency. Like TCM, DMatrix is designed to be general-purpose, namely, it
can support common query operations, including weight-based queries
(e.g., edge/node weight) and structure information queries (e.g., path
reachability). In order to mitigate the accuracy limitations of exist-
ing graph sketches, we integrate a majority voting process in the
3-dimensional sketch structure for the recording of the most representa-
tive graph edge. By using a stream fashion in tracking the edge weight,
such a modification is proved to be effective in narrow the error bounds
of the weight-based queries. Since we reserve a field in each bucket for
keys of interest, DMatrix can accomplish reversible query in real-time,
which is required in timely streaming applications (e.g., anomalous
traffic detection).

In a nutshell, DMatrix enables accurate and efficient queries in
stream data with an acceptable consumption of storage resources. The
main contributions are as follows:

1. We propose DMatrix, a novel 3-dimensional graph sketch for fast
and accurate summary of graph streams. DMatrix retains both
the structure- and weight-based information over the stream
data.

2. We present theoretical analysis on DMatrix for its updating
/querying time complexity and querying accuracy. Generally,
DMatrix has smaller error bounds and lower time complexity
compared with the state-of-the-art solutions.

3. We conduct experiments on three real-world stream datasets to
evaluate the power of DMatrix in supporting different analyses.
The results evaluate the superiority of DMatrix for graph stream
in terms of both effectiveness and efficiency.

This paper is organized as follows: Section 2 discusses the background
and related work. Section 3 introduces the preliminaries of the pro-
posed sketch. Section 4 describes the design details of DMatrix. Sec-
tion 5 presents the supported queries and gives a theoretical analysis
of the performance. Section 6 presents the theoretical comparison with
the state-of-the-art solution. Section 7 presents the experimental results
on real-world datasets. Finally, Section 8 concludes this work.

2. Background and related work

We briefly review the relevant efforts devoted to data stream sum-
2

marization from two aspects: classical sketches and graph sketches.
Sketches are stream data aggregation structures that track values in
a fixed number of entries called buckets. Classical sketches (e.g., Count
Sketch [13], K-ary Sketch [14], and Count-Min Sketch [15]) apply
linear projections of the data with multiple hash functions into lower-
dimensional spaces that preserve the aggregation features of the data.
Let 𝑤 denote the number of hash functions, a sketch is usually orga-
nized into a structure of 𝑤 × ℎ buckets. For each incoming key–value
pair (𝑥, 𝑓 ; 𝑡) received in time-stamp 𝑡, the sketch hashes it 𝑤 times using
the pairwise independent hash functions, and each hash function maps
the key to one of the ℎ buckets. The bucket is regarded as a counter with
an initial value of 0, which records the value corresponding to the key
mapped to the bucket. Since hash collisions may cause multiple keys
to be projected into the same bucket, the sketch can only estimate the
value of 𝑥 but not give an accurate one. For example, Count-Min Sketch
takes the minimum value of 𝑤 in all buckets as the estimated sum of key
𝑥. Note that classical sketches are designed in a two-dimensional bucket
array, which prevents them from querying structure-based information
(e.g., path- and subgraph-based queries).

Graph sketches [4,11,12,16] improve classical sketches for graph
streams, aiming to summarize graph streams in a generalized way to
support real-time updates and queries. gSketch [16] studies the sum-
mary construction and edge frequency of the graph stream. However,
it is limited to queries based on edge frequency and cannot handle more
complex queries based on graph structure. TCM [11] and GSS [4] aim
at preserving the graph structure and support various types of queries.
However, they cannot support real-time queries by reversing hashing
technique, these solutions either need to traverse the entire key space
to get the edge/node of interest or need to store an additional index
table to record the keys and their hash values. gMatrix [12] recovers the
key by using module hashing technology [17] to prune the key space.
When recovering a key, gMatrix needs to enumerate each sub-key
space and combine the recovered sub-keys to form the complete key.
However, the time cost of traversing the sub-key space is expensive and
it increases greatly with the key length. Another key recovery technique
considers both Bloom Filter and invertibility [18], yet its sensitive
to hash collisions which cannot recover the keys corresponding to a
bucket if multiple keys are mapped to this bucket. In contrast, DMatrix
aims at efficient recovery of the keys, which stores the key of interest
in the bucket directly with little consumption of storage resources, so
as to greatly reduce the computational cost of key recovery.

The types of query supported by different sketches are summarized
in Table 1, which shows that DMatrix is much more general than other
sketches.

3. Preliminaries

3.1. Graph stream summarization

A graph stream is a sequence of elements 𝑒 = (𝑥, 𝑦, 𝑓 ; 𝑡) arrived in
continuous time, where 𝑥, 𝑦 are node identifiers and edge (𝑥, 𝑦) with a
weight/frequency of 𝑓 is encountered at time-stamp 𝑡. The frequency
of the edge can be regarded as an arriving edge with a weight of 1.
Therefore, the term weight used in this paper covers the consideration
of the weight and frequency of edges/nodes. Intuitively, the node label
uniquely identifies a node, which is actually an identifier. And this
identifier can be an IP address in network traffic data, or a user ID
in social networks. Such a stream, 𝐺 = ⟨𝑒1, 𝑒2,… , 𝑒𝑚⟩ naturally defines
a graph 𝐺 = (𝑉 ,𝐸) where 𝑉 and 𝐸 are the sets of node and edge,
respectively. In a directed graph, we define 𝜔(𝑥, 𝑦) the aggregated edge
weight from node 𝑥 to node 𝑦, and 𝜔𝑜𝑢𝑡(𝑥) (𝜔𝑖𝑛(𝑥)) the aggregated
outgoing (incoming) weight of node 𝑥. The purpose of graph stream
summarization is to design a suitable graph sketch 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠) to
represent 𝐺 = (𝑉 ,𝐸), where the following condition hold [4,11]:

1. 𝐺𝑠 is a graph;
2. |𝐺𝑠| ≪ |𝐺|: the size of 𝐺𝑠 is far less than 𝐺, preferably in
sublinear space;
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Table 1
Queries supported by different sketches.

Sketch Edge
weight

Node
weight

Heavy-hitter
edge

Heavy-hitter
node

Heavy-changer
edge

Heavy-changer
node

Subgraph
weight

Path
reachability

Reversible
query

DMatrix ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TCM [11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

gMatrix [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GSS [4] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓

gSketch [16] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Classical edge sketches ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Classical node sketches ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗
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3. When a new edge in the graph stream arrives, 𝐺𝑠 updates and
the time complexity should be 𝑂(1).

4. 𝐺𝑠 supports various types of queries over the original streaming
graph 𝐺 with small margin of errors.

3.2. Categories of graph query

We classify the query operations over graph stream summarization
into four categories as follows.

1. Edge-based query: Edge weight query which determines the
weight of an edge (𝑥, 𝑦); Heavy-hitter edge query which returns
the edges whose weight is larger than a given threshold 𝛼(𝛼 ∈
(0, 1)) i.e., 𝜔(𝑥, 𝑦) > 𝛼 where  denotes the total sum of
all weight. Heavy-changer edge query which returns the edges
whose weight change is larger than a given threshold 𝛽(𝛽 ∈
(0, 1)) on the total absolute change across two adjacent epochs
i.e., |𝜔(𝑥, 𝑦; 𝑡) − 𝜔(𝑥, 𝑦; 𝑡 − 1)| > 𝛽 where  denotes the total
absolute change weight between two adjacent epochs.

2. Node-based query: Node weight query which determines the out-
going (incoming) weight of a node 𝑥; Heavy-hitter node query
which returns the nodes whose aggregate weight based on all
outgoing/incoming edges is larger than a given threshold 𝛼(𝛼 ∈
(0, 1)); Heavy-changer node query which returns the nodes whose
weight change is larger than a given threshold 𝛽(𝛽 ∈ (0, 1)) on
the total absolute change across two adjacent epochs.

3. Subgraph-based query: Subgraph weight query which determines
the aggregated weight of edges in a subgraph derived from a
given subset of nodes 𝑉 .

4. Path-based query: Path reachability query which finds whether
the source node 𝑥 can reach the destination node 𝑦 via edges
whose weight is larger than a given threshold 𝛾(𝛾 ∈ (0, 1)) on
the total weight.

The graph stream summary enables these query tasks to be completed
in sub-linear memory and time. The edge-based or node-based queries
could be answered by the classical sketches, yet cannot answer both
types of queries simultaneously. Graph sketches not only support vari-
ous types of queries but also designed to be more appropriate to answer
graph metrics (i.e., subgraph- and path-based query). One application
of graph metrics, taking social networks as an example, the subgraph
weight query which estimates the communication frequency within
the community and the path reachability query can give the potential
spreading path of a piece of news. Another use case in network moni-
toring tasks, for example, subgraph queries can locate certain topology
structures in the dynamic networks and the reachability monitoring
verifies the availability of network services. However, existing graph
sketches cannot directly return the query for heavy-key (i.e., heavy-
hitter and heavy-changer). Therefore, DMatrix is designed to be a
general-purpose sketch, which is capable of answering all the above
3

queries in graph streams. v
Fig. 2. Data structure of DMatrix.

4. The design of DMatrix

DMatrix is a novel graph sketch that supports various types of
queries. The design goals are as following: (1) Various queries: DMa-
trix supports all the queries mentioned in Section 3.2. (2) High ac-
curacy: DMatrix supports accurate estimation on weight-based queries
with provable error bounds. (3) High efficiency: DMatrix is designed
to be partly invertible, which can readily return all heavy-keys through
the sketch structure itself instead of traversing the entire key space,
thus improving the query efficiency. (4) Limited memory: DMatrix
maintains compact data structures with small static memory allocation.
For ease of reference, we list the notations in Table A.4.

4.1. Overview of DMatrix

DMatrix is designed as a three-dimensional sketch shown in Fig. 2.
The first two dimensions represent the length and width of the bucket
array and the third dimension corresponds to the depth of the bucket
array. Each hash function defines a mapping from a node in set 𝑉
to an integer in the range of [1, ℎ]. DMatrix adopts the same value
for length and width (i.e., ℎ) and uses 𝑤 pairwise-independent hash
functions so that it is a 3-dimensional structure with ℎ×ℎ×𝑤 buckets.
Correspondingly, we define a bucket coordinate as 𝐵(𝑖, 𝑗, 𝑘), where 𝑖
and 𝑗 are indices of the hash-mapped nodes and 𝑘 is the index of the
hash functions being used for the mapping. Therefore, the 𝑘th hash
function ℎ𝑘(⋅) maps the edge (𝑥, 𝑦) to the bucket index of 𝐵(𝑖, 𝑗, 𝑘), where
𝑖 = ℎ𝑘(𝑥), 𝑗 = ℎ𝑘(𝑦) and 𝑘 ∈ [1, 𝑤].

.2. Structure of the bucket

To facilitate the reversible query, which refers to finding the key
orresponding to a node or an edge that meets certain conditions, we
eserve a space within the bucket for the storage of the key. Due to
he hash collision, different edges may project into the same bucket.
hus there may be more than one key mapped to the same bucket.
D-Sketch [19] occasionally expands the associative key array in the
ucket to hold more candidate keys, yet dynamic memory allocation is

ery costly. To save computing and storage overhead, DMatrix keeps
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only one key in each bucket. For buckets with hash collisions, we will
select one key to store in the bucket. In fact, each bucket contains an
aggregation of edge weight with the same hash value, and the key we
chose to store should best represent the aggregation result. To achieve
this, we apply the majority vote algorithm (MJRTY) used in [20], which
enables us to track the key with the majority weight in the bucket in
an online streaming fashion. MJRTY [21] processes a stream of votes
and aims to find the majority vote.

As shown in Fig. 2, 𝐵(𝑖, 𝑗, 𝑘) denotes the bucket at the 𝑖th row, the
𝑗th column and the 𝑘th depth, where 𝑖, 𝑗 ∈ [1, ℎ], 𝑘 ∈ [1, 𝑤]. Each bucket
𝐵(𝑖, 𝑗, 𝑘) consists of three fields: (1) 𝑆(𝑖, 𝑗, 𝑘), which records the total
value of all weight hashed to the bucket; (2) 𝐾(𝑖, 𝑗, 𝑘), which store the
key with the majority weight in the bucket currently; and (3) 𝐼(𝑖, 𝑗, 𝑘),
which is an indicator counter that decides whether to retain or replace
the candidate key in 𝐾(𝑖, 𝑗, 𝑘). Thanks to MJRTY, which enables us
to track the key with majority weight on evolving graphs such that
DMatrix can hold the key with majority weight in the field 𝐾 among
the keys mapped to this bucket currently.

4.3. The updating process

The process of updating DMatrix is fairly straightforward as shown
in Algorithm 1. We start off by initializing the three fields 𝑆(𝑖, 𝑗, 𝑘),
𝐾(𝑖, 𝑗, 𝑘) and 𝐼(𝑖, 𝑗, 𝑘) in the bucket to 0. For a incoming edge (𝑥, 𝑦)
whose weight is 𝑓 , we first compute the index of the bucket 𝐵(ℎ𝑘(𝑥),
ℎ𝑘(𝑦), 𝑘). We then increment 𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) by 𝑓 (Line 2) and check
whether (𝑥, 𝑦) is stored in 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘). If 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) equals
(𝑥, 𝑦), we increase 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) by 𝑓 (Lines 3–4). Otherwise, we
decrease 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) by 𝑓 (Lines 5–6). If 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) drops
below 0, we replace 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) by (𝑥, 𝑦) and reset 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘)
with its absolute value (Lines 7–10).
Algorithm 1 Update DMatrix
Input: (𝑥, 𝑦, 𝑓 ; 𝑡)
1: for 𝑘 = 1 to 𝑤 do
2: 𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) ← 𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) + 𝑓
3: if 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) == (𝑥, 𝑦) then
4: 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) ← 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) + 𝑓
5: else
6: 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) ← 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) − 𝑓
7: if 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) < 0 then
8: 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) ← (𝑥, 𝑦)
9: 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) ← −𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘)

10: end if
11: end if
12: end for

5. Query operations and theoretical analysis

In the following, we introduce the query operations and provide
their theoretical analysis.

5.1. Edge weight query

Algorithm 2 shows the query operation on edge weight. For a
querying edge (𝑥, 𝑦) hashed in 𝑤 buckets, we calculate the estimate
𝜔̃(𝑥, 𝑦)𝑘 of 𝜔(𝑥, 𝑦)𝑘 in each depth of bucket array (Lines 1–7): if (𝑥, 𝑦)
and 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) are the same, we set 𝜔̃(𝑥, 𝑦)𝑘 = (𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘)+
𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘))∕2; otherwise, we set 𝜔̃(𝑥, 𝑦)𝑘 = (𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) −
𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘))∕2 where 𝑘 ∈ [1, 𝑤]. Finally, we return the minimum
of all the 𝜔̃(𝑥, 𝑦)𝑘 estimates as the final estimate 𝜔̃(𝑥, 𝑦) (Lines 8–9).

In this paper, we roughly estimate the time complexity by the
number of bucket accesses brought by the query operation. Obviously,
the time complexity of querying the edge weights is 𝛩(𝑤).
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Algorithm 2 Query for Edge Weight
Input: querying edge (𝑥, 𝑦)
utput: estimate weight 𝜔̃(𝑥, 𝑦) of edge (𝑥, 𝑦)

1: for 𝑘 = 1 to 𝑤 do
2: if 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) == (𝑥, 𝑦) then
3: 𝜔̃(𝑥, 𝑦)𝑘 ← (𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) + 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘))∕2
4: else
5: 𝜔̃(𝑥, 𝑦)𝑘 ← (𝑆(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) − 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘))∕2
6: end if
7: end for
8: 𝜔̃(𝑥, 𝑦) ← 𝑚𝑖𝑛1≤𝑘≤𝑤𝜔̃(𝑥, 𝑦)𝑘
9: return 𝜔̃(𝑥, 𝑦)

Next, we show the probabilistic accuracy guarantee on edge weight
query. The analysis assumes that DMatrix is configured with 𝑤 = 𝑙𝑜𝑔 1

𝛿 ,

ℎ =
√

2
𝜖 , where 𝜖 ∈ (0, 1) is the approximation parameter, 𝛿 ∈ (0, 1) is

the error probability, and the logarithm base is 2.

Theorem 1. Given the current total edge weight  , the edge weight
estimation result satisfies 𝜔(𝑥, 𝑦) ≤ 𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖

2 with a probability
of at least 1 − 𝛿.

Proof . From Algorithm 2, we can easily get that 𝜔̃(𝑥, 𝑦) ≥ 𝜔(𝑥, 𝑦). Next,
we show the upper bound of 𝜔̃(𝑥, 𝑦). Consider the expectation of the
total sum of all weight except (𝑥, 𝑦) in its mapped bucket 𝐵(𝑖, 𝑗, 𝑘). It is
iven by 𝐸[𝑆(𝑖, 𝑗, 𝑘)−𝜔(𝑥, 𝑦)] = 𝐸[

∑

𝑠≠𝑥,𝑑≠𝑦,ℎ𝑘(𝑠)=ℎ𝑘(𝑥),ℎ𝑘(𝑑)=ℎ𝑘(𝑦) 𝜔(𝑠, 𝑑)] ≤
−𝜔(𝑥,𝑦)

ℎ2
≤ 𝜖

2 . By Markov’s inequality, we have

𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥ 𝜖 ] ≤ 1
2
. (1)

We now consider the estimate 𝜔̃(𝑥, 𝑦)𝑘 in different depth of bucket
rray according to Algorithm 2. If 𝐾(𝑖, 𝑗, 𝑘) == (𝑥, 𝑦), then 𝜔̃(𝑥, 𝑦)𝑘 −
(𝑥, 𝑦) = 𝑆(𝑖,𝑗,𝑘)+𝐼(𝑖,𝑗,𝑘)

2 − 𝜔(𝑥, 𝑦) ≤ 𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥,𝑦)
2 . It is obvious that the

bucket 𝐵(𝑖, 𝑗, 𝑘) has a hash collision when the inequality is formed.
If 𝐾(𝑖, 𝑗, 𝑘) ≠ (𝑥, 𝑦), then 𝜔̃(𝑥, 𝑦)𝑘 − 𝜔(𝑥, 𝑦) = 𝑆(𝑖,𝑗,𝑘)−𝐼(𝑖,𝑗,𝑘)

2 − 𝜔(𝑥, 𝑦) ≤
𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥,𝑦)

2 .
Combining both cases, we have 𝑃𝑟[𝜔̃(𝑥, 𝑦)𝑘 − 𝜔(𝑥, 𝑦) ≥ 𝜖

2 ] ≤
𝑃𝑟[ 𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥,𝑦)2 ≥ 𝜖

2 ] ≤ 1
2 due to (1).

Since 𝜔̃(𝑥, 𝑦) is the minimum of all 𝜔̃(𝑥, 𝑦)𝑘 in 𝑤 different buckets,
e have 𝑃𝑟[𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖

2 ] = 1 − 𝑃𝑟[𝜔̃(𝑥, 𝑦) ≥ 𝜔(𝑥, 𝑦) + 𝜖
2 ] =

1 − 𝑃𝑟[𝜔̃(𝑥, 𝑦)𝑘 ≥ 𝜔(𝑥, 𝑦) + 𝜖
2 ,∀𝑘] ≥ 1 − ( 12 )

𝑤 = 1 − 𝛿. □

5.2. Node weight query

In a directed graph, a node has an outgoing degree and an incoming
degree. In this paper, we refer the sum of the weight in the outgoing
(incoming) edge of the node as outgoing (incoming) weight denotes as
𝜔𝑜𝑢𝑡(𝑥) (𝜔𝑖𝑛(𝑥)).

Algorithm 3 shows the query operation on node weight. Note that
we use outgoing weight to illustrate the query operation on node
weight, and the incoming weight is consistent with it. For a querying
node 𝑥 hashed in 𝑖th row and 𝑘th depth of the bucket array, we
first calculate the estimate 𝜔̃𝑜𝑢𝑡(𝑥)𝑘 of 𝜔𝑜𝑢𝑡(𝑥) in each depth of bucket
array (Lines 2–8): we compare (𝑥, ⋅) to the key field (𝐾(ℎ𝑘(𝑥), 𝑗, 𝑘)) of
each bucket in the ℎ𝑘(𝑥)th row on each depth of bucket array, where
⋅ denotes it can be any node identifier and 𝑗 ∈ [1, ℎ]. If (𝑥, ⋅) ==
𝐾(ℎ𝑘(𝑥), 𝑗, 𝑘), we set 𝜔̃𝑜𝑢𝑡(𝑥)𝑗,𝑘, = (𝑆(ℎ𝑘(𝑥), 𝑗, 𝑘) + 𝐼(ℎ𝑘(𝑥), 𝑗, 𝑘))∕2; oth-
rwise, we set 𝜔̃𝑜𝑢𝑡(𝑥)𝑗,𝑘 = (𝑆(ℎ𝑘(𝑥), 𝑗, 𝑘) − 𝐼(ℎ𝑘(𝑥), 𝑗, 𝑘))∕2 where 𝑘 ∈
1, 𝑤] and 𝑗 ∈ [1, ℎ]. Next, we calculate the depth estimate 𝜔̃𝑜𝑢𝑡(𝑥)𝑘 =
ℎ
𝑗=1 𝜔̃𝑜𝑢𝑡(𝑥)𝑗,𝑘 on each depth of the bucket array (Line 9). Finally, we

eturn the minimum of all the 𝜔̃𝑜𝑢𝑡(𝑥)𝑘 estimates as the final estimate
̃ 𝑜𝑢𝑡(𝑥) (Lines 11–12). Similarly, the incoming weight of a node can be
alculated by the corresponding column of the bucket array.
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Algorithm 3 Query for Node Weight (outgoing)
Input: querying node 𝑥
Output: estimate output weight 𝜔̃𝑜𝑢𝑡(𝑥) of node 𝑥
1: for 𝑘 = 1 to 𝑤 do
2: for 𝑗 = 1 to ℎ do
3: if 𝐾(ℎ𝑘(𝑥), 𝑗, 𝑘) == (𝑥, ⋅) then
4: 𝜔̃𝑜𝑢𝑡(𝑥)𝑗,𝑘 ← (𝑆(ℎ𝑘(𝑥), 𝑗, 𝑘) + 𝐼(ℎ𝑘(𝑥), 𝑗, 𝑘))∕2
5: else
6: 𝜔̃𝑜𝑢𝑡(𝑥)𝑗,𝑘 ← (𝑆(ℎ𝑘(𝑥), 𝑗, 𝑘) − 𝐼(ℎ𝑘(𝑥), 𝑗, 𝑘))∕2
7: end if
8: end for
9: 𝜔̃𝑜𝑢𝑡(𝑥)𝑘 ←

∑ℎ
𝑗=1 𝜔̃𝑜𝑢𝑡(𝑥)𝑗,𝑘

10: end for
11: 𝜔̃𝑜𝑢𝑡(𝑥) ← 𝑚𝑖𝑛1≤𝑘≤𝑤𝜔̃𝑜𝑢𝑡(𝑥)𝑘
12: return 𝜔̃𝑜𝑢𝑡(𝑥)

The time complexity of querying the node’s aggregated weights is
(ℎ𝑤).

Theorem 2 shows the probabilistic accuracy guarantee on node
eight query. As the number of rows and columns are the same in
Matrix, the outgoing and incoming weight of the node have the same
ccuracy probabilistic guarantee. For convenience, we use 𝜔̃(𝑥) and
(𝑥) to denote the estimate and real outgoing/incoming weight of node
, respectively. The proof is given in Appendix B.1.

heorem 2. Given the current total edge weight  , the node weight
stimation result satisfies 𝜔(𝑥) ≤ 𝜔̃(𝑥) ≤ 𝜔(𝑥) +

√

2𝜖
2 with a probability

of at least 1 − 𝛿.

5.3. Heavy-hitter edge query

Algorithm 4 shows query operation on heavy-hitter edge. To query
the heavy-hitters in a given threshold 𝛼, we first calculate the total

eight  at this epoch (Line 1). Then we check every bucket: if
(𝑖, 𝑗, 𝑘) ≥ 𝛼 , we let (𝑥, 𝑦) = 𝐾(𝑖, 𝑗, 𝑘) and query 𝜔̃(𝑥, 𝑦) from Algorithm
(Lines 4–6). We return all detected heavy-hitter edges (x, y) which

atisfy 𝜔̃(𝑥, 𝑦) ≥ 𝛼 .

Algorithm 4 Query for Heavy-hitter Edge
Input: heavy-hitter threshold 𝛼
utput: all detected heavy-hitter edges 𝛼

1:  =
∑ℎ

𝑖=1
∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 1)
2: 𝛼 ← ∅
3: for ∀𝑖 ∈ [1, ℎ],∀𝑗 ∈ [1, ℎ],∀𝑘 ∈ [1, 𝑤] do
4: if 𝑆(𝑖, 𝑗, 𝑘) ≥ 𝛼 then
5: (𝑥, 𝑦) ← 𝐾(𝑖, 𝑗, 𝑘)
6: if 𝜔̃(𝑥, 𝑦) ≥ 𝛼 then
7: 𝛼 ← 𝛼 ∪ (𝑥, 𝑦)
8: end if
9: end if
0: end for
1: return 𝛼

In the heavy-hitter edge query process, the time complexity of
canning DMatrix to calculate the total weight  is 𝛩(ℎ2𝑤). Next, the

process goes through each bucket to check if 𝑆(𝑖, 𝑗, 𝑘) ≥ 𝛼 with
a time complexity of 𝛩(ℎ2𝑤). For each bucket meets the condition
𝑆(𝑖, 𝑗, 𝑘) ≥ 𝛼 , it does a edge query process according to Algorithm
5

2. Therefore, the total time complexity of querying the heavy-hitter w
edges is 𝛩(2ℎ2𝑤)+𝛺(𝑤|𝛼|), where |𝛼| denotes the number of detected
eavy-hitter edges.

Theorem 3 shows the error bounds of the heavy-hitter edge query
n DMatrix. The proof is given in Appendix B.2.

heorem 3. Given that 𝛼 ≥ 𝜖, the probability that DMatrix returns every
heavy-hitter edge is at least 1 − 𝛿. And falsely returns a non-heavy hitter
with weight no more than (𝛼 − 𝜖

2 ) with a probability at most 𝛿.

5.4. Heavy-hitter node query

Algorithm 5 shows query operation on heavy-hitter node, which we
take heavy-hitter on outgoing weight of a node as the example. We
first calculate the total weight  at this epoch in a given threshold 𝛼
(Line 1). Then we check the sum value of each row in each depth at the
bucket array: if ∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) ≥ 𝛼 , ∀𝑗 ∈ [1, ℎ], we let (𝑥, 𝑦) = 𝐾(𝑖, 𝑗, 𝑘)
and query 𝜔̃𝑜𝑢𝑡(𝑥) from Algorithm 3 (Lines 4–7). We return all detected
eavy-hitter node 𝑥 which satisfy 𝜔̃(𝑥) ≥ 𝛼 .

Algorithm 5 Query for Heavy-hitter Node (outgoing)
Input: heavy-hitter threshold 𝛼
Output: all detected heavy-hitter nodes 𝛼
1:  =

∑ℎ
𝑖=1

∑ℎ
𝑗=1 𝑆(𝑖, 𝑗, 1)

2: 𝛼 ← ∅
3: for ∀𝑖 ∈ [1, ℎ],∀𝑘 ∈ [1, 𝑤] do
4: if ∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) ≥ 𝛼 then
5: for 𝑗 = 1 to ℎ do
6: (𝑥, ⋅) ← 𝐾(𝑖, 𝑗, 𝑘)
7: if 𝜔̃𝑜𝑢𝑡(𝑥) ≥ 𝛼 then
8: 𝛼 ← 𝛼 ∪ 𝑥
9: end if
0: end for
1: end if
2: end for
3: return 𝛼

The time complexity of calculating the total weight  is 𝛩(ℎ2𝑤).
Then, the process goes through each bucket to calculate the total row
weight ∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) with a time complexity of 𝛩(ℎ2𝑤). For each row
meets the condition ∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) ≥ 𝛼 , it does node queries on each
distinct node in this row according to Algorithm 3. Therefore, the total
time complexity on heavy-hitter node query is 𝛩(2ℎ2𝑤) + 𝛺(ℎ𝑤|𝛼|),
where |𝛼| denotes the number of detected heavy-hitter nodes.

Theorem 4 shows the error bounds of the heavy-hitter node query
in DMatrix. The proof is given in Appendix B.3.

Theorem 4. Given that 𝛼 ≥
√

2𝜖, the probability that DMatrix returns
every heavy-hitter node is at least 1− 𝛿. For a non-heavy-hitter node whose
weight is no more than (𝛼 −

√

2𝜖
2 ) , the probability of falsely returning it is

at most 𝛿.

5.5. Heavy-changer edge query

Algorithm 6 shows query operation on heavy-changer edge. To
query the heavy-changers in a given threshold 𝛽, we first get all the
distinct edges 𝐸 from the bucket array at both the adjacent epochs
and calculate the total change ̃ between the adjacent epochs (Lines
1–11). Note that ̃ is an estimate of the ground-truth weight change
. And ̃ ≤ , since the hash collisions will cancel out weight change
in different directions.

Then we use the estimated maximum change of weight for our
query to reduce the number of false negatives. Specifically, let 𝑈 (𝑥, 𝑦)
and 𝐿(𝑥, 𝑦) be the upper and lower bounds of 𝜔(𝑥, 𝑦), respectively.

e set 𝑈 (𝑥, 𝑦) = 𝜔̃(𝑥, 𝑦) returned by Algorithm 2 (Lines 15–16). Also,
e set 𝐿(𝑥, 𝑦) ← 𝑚𝑎𝑥 {𝐿(𝑥, 𝑦) }, where 𝐿(𝑥, 𝑦) is set as follows:
1≤𝑘≤𝑤 𝑘 𝑘
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Algorithm 6 Query for Heavy-changer Edge
Input: heavy-changer threshold 𝛽
Output: all detected heavy-changer edges 𝛽
1: 𝐸 ← ∅, ̃ ← 0
2: for 𝑘 = 1 to 𝑤 do
3: ̃𝑘 ← 0
4: for 𝑖 = 1 to ℎ do
5: for 𝑗 = 1 to ℎ do
6: 𝐸+ = 𝐾 𝑡−1(𝑖, 𝑗, 𝑘)
7: 𝐸+ = 𝐾 𝑡(𝑖, 𝑗, 𝑘)
8: ̃𝑘+ = |𝑆𝑡−1(𝑖, 𝑗, 𝑘) − 𝑆𝑡(𝑖, 𝑗, 𝑘)|
9: end for

10: end for
11: ̃ ← 𝑚𝑎𝑥(̃, ̃𝑘)
12: end for
13: 𝛽 ← ∅
14: for (𝑥, 𝑦) in 𝐸 do do
15: 𝑈 𝑡(𝑥, 𝑦) ← 𝜔̃𝑡(𝑥, 𝑦)
16: 𝑈 𝑡−1(𝑥, 𝑦) ← 𝜔̃𝑡−1(𝑥, 𝑦)
17: if 𝑈 𝑡(𝑥, 𝑦) ≥ 𝛽̃ or 𝑈 𝑡−1(𝑥, 𝑦) ≥ 𝛽̃ then
18: 𝐿𝑡(𝑥, 𝑦) ← LowEstimate((𝑥, 𝑦))
19: 𝐿𝑡−1(𝑥, 𝑦) ← LowEstimate((𝑥, 𝑦))
20: 𝐷̃(𝑥, 𝑦) ← 𝑚𝑎𝑥{|𝑈 𝑡(𝑥, 𝑦) − 𝐿𝑡−1(𝑥, 𝑦))|, |𝐿𝑡(𝑥, 𝑦) − 𝑈 𝑡−1(𝑥, 𝑦)|}
21: if 𝐷̃(𝑥, 𝑦) ≥ 𝛽̃ then
22: 𝛽 ← 𝛽 ∪ (𝑥, 𝑦)
23: end if
24: end if
25: end for
26: return 𝛽
27: function LowEstimate((𝑥, 𝑦))
28: for 𝑘 = 1 to 𝑤 do
29: if (𝑥, 𝑦) == 𝐾(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘) then
30: 𝐿(𝑥, 𝑦)𝑘 ← 𝐼(ℎ𝑘(𝑥), ℎ𝑘(𝑦), 𝑘)
31: else
32: 𝐿(𝑥, 𝑦)𝑘 ← 0
33: end if
34: end for
35: 𝐿(𝑥, 𝑦) ← 𝑚𝑎𝑥1≤𝑘≤𝑤{𝐿(𝑥, 𝑦)𝑘}
36: return 𝐿(𝑥, 𝑦)
37: end function

for each hashed bucket 𝐵(𝑖, 𝑗, 𝑘) of (𝑥, 𝑦), if 𝐾(𝑖, 𝑗, 𝑘) == (𝑥, 𝑦) we set
𝐿(𝑥, 𝑦)𝑘 = 𝐼(𝑖, 𝑗, 𝑘), otherwise, we set 𝐿(𝑥, 𝑦)𝑘 = 0, where ℎ𝑘(𝑥) =
𝑖, ℎ𝑘(𝑦) = 𝑗 and 𝑘 ∈ [1, 𝑤] (Lines 27–37). Now, let 𝑈 𝑡−1(𝑥, 𝑦) and
𝑡−1(𝑥, 𝑦) (resp. 𝑈 𝑡(𝑥, 𝑦) and 𝐿𝑡(𝑥, 𝑦)) be the upper and lower bounds of

𝜔(𝑥, 𝑦) in the previous (resp. current) epoch, respectively. The estimated
maximum change of (𝑥, 𝑦) on edge weight is given by 𝐷̃(𝑥, 𝑦) ←

𝑚𝑎𝑥{|𝑈 𝑡(𝑥, 𝑦) − 𝐿𝑡−1(𝑥, 𝑦)|, |𝐿𝑡(𝑥, 𝑦) − 𝑈 𝑡−1(𝑥, 𝑦)|} (Line 20).
Finally, we check every edge appears in the two adjacent epochs.

For each edge, if 𝑈 𝑡(𝑥, 𝑦) ≥ 𝛽̃ or 𝑈 𝑡−1(𝑥, 𝑦) ≥ 𝛽̃, we estimate its
weight change and return (𝑥, 𝑦) as a heavy-changer edge if 𝐷̃(𝑥, 𝑦) ≥ 𝛽̃.

The time complexity of calculating total weight change between
two adjacent epochs is 𝛩(2ℎ2𝑤). Then, the process estimates the upper
bound weight (i.e., 𝑈 (𝑥, 𝑦)) of every distinct edge which appears in the
two adjacent epochs with a total time complexity of 𝛩(2𝑤||), where
|𝐸 | denotes the number of distinct edges appear in the two adjacent
epochs. For each edge meets the condition 𝑈 𝑡(𝑥, 𝑦) ≥ 𝛽̃ or 𝑈 𝑡−1(𝑥, 𝑦) ≥
𝛽̃, we will calculate the lower bound weight (i.e., 𝐿(𝑥, 𝑦)) with a time
complexity of 2𝑤 for each. Therefore, the total time complexity on
heavy-changer edge query is 𝛩(2ℎ2𝑤) +𝛺(4𝑤|𝛽 |), where |𝛽 | denotes
the number of detected heavy-changer edges.

Theorem 5 shows the accurate guarantee of heavy-changer edge
query. The proof is given in Appendix B.4.
6

Theorem 5. Let  𝑡 and  𝑡−1 denote the total sum of all weight in
the current and previous epochs. Given that 𝛽̃

𝜖 ≥ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} and
≥ 𝜖, the probability that DMatrix returns every heavy-changer edge is
t least 1 − 𝛿. For a non-heavy-changer edge whose weight is no more than
̃−𝜖( 𝑡+ 𝑡−1), the probability of falsely returning it is at most 1−(1−𝛿)2.

.6. Heavy-changer node query

Algorithm 7 shows query operation on heavy-changer node. To
uery the heavy-changers in a given threshold 𝛽, we first get all the
istinct nodes 𝑉 stored in the key field of the bucket array at both the
djacent epochs and calculate the total change ̃ between the adjacent
pochs (Lines 1–11).

Then, we use the query results to reduce false negatives. The method
f reducing false negatives in heavy node query is similar to heavy
dge. Similarly, 𝐷̃(𝑥) ← 𝑚𝑎𝑥{|𝑈 𝑡(𝑥) − 𝐿𝑡−1(𝑥)|, |𝐿𝑡(𝑥) − 𝑈 𝑡−1(𝑥)|} gives
he estimated maximum change of 𝑥 on outgoing weight (Line 20).

Finally, we check every node appears in the two adjacent epochs.
or each node, if 𝑈 𝑡(𝑥) ≥ 𝛽̃ or 𝑈 𝑡−1(𝑥) ≥ 𝛽̃, we estimate its weight
hange and return 𝑥 as a heavy-changer node if 𝐷̃(𝑥) ≥ 𝛽̃.

The time complexity of calculating total weight change between
wo adjacent epochs is 𝛩(2ℎ2𝑤). Then, the process estimates the upper
ound weight (i.e., 𝑈 (𝑥)) of every distinct node which appears in the
wo adjacent epochs with a total time complexity of 𝛩(2ℎ𝑤|𝑉 |), where
𝑉 | denotes the number of distinct nodes appear in the two adjacent
pochs. For each node meets the condition 𝑈 𝑡(𝑥) ≥ 𝛽̃ or 𝑈 𝑡−1(𝑥) ≥
̃, we will calculate the lower bound weight (i.e., 𝐿(𝑥)) with a time
omplexity of 2ℎ𝑤 for each. Therefore, the total time complexity on
eavy-changer node query is 𝛩(2ℎ2𝑤)+𝛺(4ℎ𝑤|𝛽 |), where |𝛽 | denotes
he number of detected heavy-changer nodes.

Theorem 6 shows the accurate guarantee of heavy-changer node
uery. Please refer to Appendix B.5 for the proof.

heorem 6. Given that 𝛽̃
√

2𝜖
≥ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} and 𝛽 ≥

√

2𝜖, the
probability that DMatrix returns every heavy-changer node is at least 1− 𝛿.
or a non-heavy-changer node whose weight is no more than 𝛽̃−

√

2𝜖( 𝑡+
𝑡−1), the probability of falsely returning it is at most 1 − (1 − 𝛿)2.

.7. Subgraph weight query

The subgraph weight query is to compute the aggregated weight in
subgraph induced by a given subset 𝑠 = {𝑥1,… , 𝑥𝑛} of all nodes
in graph streams, where 𝑠 ⊆ 𝑉 . Since we cannot grasp the true

onnectivity of the subgraph, we assume that there is a connection
etween each node in the subgraph. And all the edges in the subgraph
s denoted by 𝑠 = {𝑒1,… , 𝑒𝑚} where |𝑠| = |𝑠|(|𝑠|−1)

2 , |𝑠| and |𝑠|

denote the number of edges and nodes in the subgraph, respectively.
Algorithm 8 shows the query operation on subgraph weight. We

first get all the possible edges 𝑠 in the subgraph (Lines 2–4). Then
we estimate the weight of each edge in 𝑠 according to Algorithm 1
and sum its estimated weight together to get the aggregated weight
estimation of subgraph ̃𝜔(𝑠) (Lines 5–8).

The time complexity of estimating the aggregated weight in a
subgraph is 𝛩(𝑤|𝑠|) = 𝛩(𝑤 |𝑠|(|𝑠|−1)

2 ), where |𝑠| is the number of
nodes in the subgraph.

Theorem 7. 𝜔(𝑠) ≤ 𝜔̃(𝑠) ≤ 𝜔(𝑠) +
𝜖 |𝑠|(|𝑠|−1)

4 with a probability at

least (1 − 𝛿)
|𝑠 |(|𝑠 |−1)

2 , where  is the total edge weight in current and |𝑠|

denotes the number of nodes in the given subgraph.

Theorem 7 shows the probabilistic accuracy guarantee on sub-
graph weight query. The proof of it is similar to Theorem 1, while it

aggregates each edge weight estimation and treats them independently.
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Algorithm 7 Query for Heavy-changer Node (outgoing)
Input: heavy-changer threshold 𝛽
Output: all detected heavy-changer nodes 𝛽
1: 𝑉 ← ∅, ̃ ← 0
2: for 𝑘 = 1 to 𝑤 do
3: ̃𝑘 ← 0
4: for 𝑖 = 1 to ℎ do
5: for 𝑗 = 1 to ℎ do
6: 𝑉 + = 𝐾 𝑡−1(𝑖, 𝑗, 𝑘)
7: 𝑉 + = 𝐾 𝑡(𝑖, 𝑗, 𝑘)
8: ̃𝑘+ = |𝑆𝑡−1(𝑖, 𝑗, 𝑘) − 𝑆𝑡(𝑖, 𝑗, 𝑘)|
9: end for

10: end for
11: ̃ ← 𝑚𝑎𝑥(̃, ̃𝑘)
12: end for
13: 𝛽 ← ∅
14: for 𝑥 in 𝑉 do do
15: 𝑈 𝑡(𝑥) ← 𝜔̃𝑡

𝑜𝑢𝑡(𝑥)
16: 𝑈 𝑡−1(𝑥) ← 𝜔̃𝑡−1

𝑜𝑢𝑡 (𝑥)
17: if 𝑈 𝑡(𝑥) ≥ 𝛽̃ or 𝑈 𝑡−1(𝑥) ≥ 𝛽̃ then
18: 𝐿𝑡(𝑥, 𝑦) ← LowEstimate(𝑥)
19: 𝐿𝑡−1(𝑥) ← LowEstimate(𝑥)
20: 𝐷̃(𝑥) ← 𝑚𝑎𝑥{|𝑈 𝑡(𝑥) − 𝐿𝑡−1(𝑥))|, |𝐿𝑡(𝑥) − 𝑈 𝑡−1(𝑥)|}
21: if 𝐷̃(𝑥) ≥ 𝛽̃ then
22: 𝛽 ← 𝛽 ∪ 𝑥
23: end if
24: end if
25: end for
26: return 𝛽
27: function LowEstimate(𝑥)
28: for 𝑘 = 1 to 𝑤 do
29: for 𝑗 = 1 to ℎ do
30: if (𝑥, ⋅) == 𝐾(ℎ𝑘(𝑥), 𝑗, 𝑘) then
31: 𝐿(𝑥)𝑗,𝑘 ← 𝐼(ℎ𝑘(𝑥), 𝑗, 𝑘)
32: else
33: 𝐿(𝑥)𝑗,𝑘 ← 0
34: end if
35: end for
36: 𝐿(𝑥)𝑘 =

∑𝑗=ℎ
𝑗=1 𝐿(𝑥)𝑗,𝑘

37: end for
38: 𝐿(𝑥) ← 𝑚𝑎𝑥1≤𝑘≤𝑤{𝐿(𝑥)𝑘}
39: return 𝐿(𝑥)
40: end function

Algorithm 8 Query for Subgraph Weight
Input: node set 𝑠 = 𝑥1,… , 𝑥𝑛
utput: estimate aggregated weight 𝜔̃(𝑠) of node set 𝑠

1: 𝜔̃(𝑠) ← 0, 𝑠 ← ∅
2: for 𝑥𝑖, 𝑥𝑗 ∈ 𝑠, 𝑥𝑖 ≠ 𝑥𝑗 do
3: 𝑠+ = (𝑥𝑖, 𝑥𝑗 )
4: end for
5: for (𝑠, 𝑡) in 𝑠 do
6: 𝜔̃(𝑠)+ = 𝜔̃(𝑠, 𝑡)
7: end for
8: return 𝜔̃(𝑠)

5.8. Path reachability query

We define the path reachability query to determine if a source node
𝑥 is reachable to a destination node 𝑦 via edges that have weight at least
𝛾 , where  is the total weight. This query returns a boolean result
to tell whether there exists a path from 𝑥 to 𝑦, s.t. the edge(s) on the
7

path has/have a weight at least 𝛾 for each. Like the heavy-key query,
this query is also based on the partly reversible property of DMatrix,
since we only want to get the connected edge information via the data
structure itself, without adding additional storage space for reachability
information. We note that this query is fairly straightforward to resolve
with the use of heavy-hitter edge query. Algorithm 9 shows the query
operation on path reachability. In the first step, we get all edges that
have the weight of at least 𝛾 according to Algorithm 4 (Lines 1–2).
Then, we utilize the breadth first search algorithm (BFS) to answer the
reachability question using these edges (Line 3).

Algorithm 9 Query for Path Reachability
Input: source node 𝑥, destination node 𝑦, weight threshold 𝛾
Output: one path from 𝑥 to 𝑦 if exists, otherwise none
1: 𝛼 ← 𝛾
2: 𝛼 ← Heavy-hitter Edge Query(𝛼)
3: 𝑝 ← BFS(𝑥, 𝑦, 𝛼)
4: return 𝑝

The time complexity of path reachability query contains two parts,
i.e., the heavy-hitter edge query with time complexity of 𝛩(2ℎ2𝑤) +
𝛺(𝑤|𝛼|) and the BFS process. The roughly total time complexity of
ath query is 𝛩(2ℎ2𝑤) +𝛺(𝑤|𝛼|).

heorem 8. DMatrix determines that there is a path from 𝑥 to 𝑦, if 𝑥 is
reachable to 𝑦, with a probability at least (1−𝛿)𝑛, provided that 𝛾 ≥ 𝜖, where
𝑛 is the number of edges the path contains. And falsely returns a nonexistent
path with a probability at most 1 − (1 − 𝛿)𝑛, s.t. each edge weight on the
nonexistent path is no more than (𝛾 − 𝜖

2 ) .

Theorem 8 shows the probabilistic accuracy guarantee on path
uery. The proof of it is similar to Theorem 3, except that it extends
he proof from 1 to 𝑛 heavy-hitter edges.

. Theoretical comparison with TCM

We compare the probabilistic accuracy guarantee, the time com-
lexity and the memory overhead of DMatrix with TCM [11], the
tate-of-the-art in graph sketch. Table 2 provides a summary of compar-
son with TCM on each query process, in terms of 𝜖, 𝛿, ℎ,𝑤. The proofs

of probabilistic guarantee on TCM are given in Appendix C.
The weight-based querying operations (i.e., queries on edge weight,

node weight and subgraph weight) show that the upper error bound of
DMatrix is only half as TCM’s with the same probabilistic guarantee
and time complexity.

In the comparison of heavy-key and reachability queries, we study
the metrics of true positive probability (𝑃𝑟[𝑇𝑃 ]) and false positive
probability (𝑃𝑟[𝐹𝑃 ]) under certain constraints. 𝑃𝑟[𝑇𝑃 ] and 𝑃𝑟[𝐹𝑃 ]
denote the probability of reporting a heavy-key/reachable path and
the probability of falsely returning a non-heavy-key/infeasible path as
a heavy-key/reachable path, respectively. Note that the true positive
probability of heavy-hitter query in TCM is 1, which is higher than that
of it in DMatrix, yet with orders of magnitude higher time complexity.
As it has to query the whole key space to get all possible heavy-keys.

In short, DMatrix narrows the error bounds of weight-based queries
by MJRTY and its reversibility greatly reduces the time complexity
of heavy-key and reachability queries. Besides, its additional storage
consumption (i.e., the key and indicator fields for each bucket) is
acceptable when compared to TCM.

7. Experimental evaluation

We perform a number of experiments to compare the performance
between DMatrix and TCM [11] in terms of accuracy and efficiency.
We first give a brief description of our real-world datasets. Then we
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Table 2
The probabilistic guarantee and time complexity of DMatrix and TCM.

Query Sketch Boundary Probabilistic guarantee Time complexity

Edge weight DMatrix 𝜔(𝑥, 𝑦) ≤ 𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖
2

≥ 1 − 𝛿 𝛩(𝑤)
TCM 𝜔(𝑥, 𝑦) ≤ 𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖 ≥ 1 − 𝛿 𝛩(𝑤)

Node weight DMatrix 𝜔(𝑥) ≤ 𝜔̃(𝑥) ≤ 𝜔(𝑥) +
√

2𝜖
2

≥ 1 − 𝛿 𝛩(ℎ𝑤)
TCM 𝜔(𝑥) ≤ 𝜔̃(𝑥) ≤ 𝜔(𝑥) +

√

2𝜖 ≥ 1 − 𝛿 𝛩(ℎ𝑤)

Heavy-hitter edge
DMatrix 𝑃𝑟[𝑇𝑃 ] s.t. 𝛼 ≥ 𝜖 ≥ 1 − 𝛿

𝛩(2ℎ2𝑤) +𝛺(𝑤|𝛼 |)𝑃𝑟[𝐹𝑃 ] s.t. 𝜔(𝑠, 𝑡) ≤ (𝛼 − 𝜖
2
) ≤ 𝛿

TCM 𝑃𝑟[𝑇𝑃 ] 1
𝛩(𝑤(2ℎ2 + |𝐸|))

𝑃𝑟[𝐹𝑃 ] s.t. 𝜔(𝑠, 𝑡) ≤ (𝛼 − 𝜖) ≤ 𝛿

Heavy-hitter node
DMatrix 𝑃𝑟[𝑇𝑃 ] s.t. 𝛼 ≥

√

2𝜖 ≥ 1 − 𝛿
𝛩(2ℎ2𝑤) +𝛺(ℎ𝑤|𝛼 |)

𝑃𝑟[𝐹𝑃 ] s.t. 𝜔(𝑠) ≤ (𝛼 −
√

2𝜖
2

) ≤ 𝛿

TCM 𝑃𝑟[𝑇𝑃 ] 1
𝛩(ℎ𝑤(2ℎ + |𝑉 |))

𝑃𝑟[𝐹𝑃 ] s.t. 𝜔(𝑠) ≤ (𝛼 −
√

2𝜖) ≤ 𝛿

Heavy-changer edge
DMatrix 𝑃𝑟[𝑇𝑃 ] s.t. 𝛽̃

𝜖
≥ 𝑚𝑎𝑥{ 𝑡 , 𝑡−1} & 𝛽 ≥ 𝜖 ≥ 1 − 𝛿

𝛩(2ℎ2𝑤) +𝛺(4𝑤|𝛽 |)𝑃𝑟[𝐹𝑃 ] s.t. 𝐷(𝑠, 𝑡) ≤ 𝛽̃ − 𝜖( 𝑡 +  𝑡−1) ≤ 1 − (1 − 𝛿)2

TCM 𝑃𝑟[𝑇𝑃 ] s.t. 𝐷(𝑥, 𝑦) ≥ 𝛽̃ + 𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡 , 𝑡−1} ≥ (1 − 𝛿)2
𝛩(2𝑤(ℎ2 + |𝐸|))

𝑃𝑟[𝐹𝑃 ] s.t. 𝐷(𝑠, 𝑡) ≤ 𝛽̃ − 𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡 , 𝑡−1} ≤ 1 − (1 − 𝛿)2

Heavy-changer node
DMatrix 𝑃𝑟[𝑇𝑃 ] s.t. 𝛽̃

√

2𝜖
≥ 𝑚𝑎𝑥{ 𝑡 , 𝑡−1} & 𝛽 ≥

√

2𝜖 ≥ 1 − 𝛿
𝛩(2ℎ2𝑤) +𝛺(4ℎ𝑤|𝛽 |)

𝑃𝑟[𝐹𝑃 ] s.t. 𝐷(𝑠) ≤ 𝛽̃ −
√

2𝜖( 𝑡 +  𝑡−1) ≤ 1 − (1 − 𝛿)2

TCM 𝑃𝑟[𝑇𝑃 ] s.t. 𝐷(𝑥) ≥ 𝛽̃ +
√

2𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡 , 𝑡−1} ≥ (1 − 𝛿)2
𝛩(2ℎ𝑤(ℎ + |𝑉 |))

𝑃𝑟[𝐹𝑃 ] s.t. 𝐷(𝑠) ≤ 𝛽̃ −
√

2𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡 , 𝑡−1} ≤ 1 − (1 − 𝛿)2

Subgraph weight DMatrix 𝜔(𝑠) ≤ 𝜔̃(𝑠) ≤ 𝜔(𝑠) +
𝜖 |𝑠 |(|𝑠 |−1)

4
≥ (1 − 𝛿)

|𝑠 |(|𝑠 |−1)
2 𝛩(𝑤 |𝑠 |(|𝑠 |−1)

2
)

TCM 𝜔(𝑠) ≤ 𝜔̃(𝑠) ≤ 𝜔(𝑠) +
𝜖 |𝑠 |(|𝑠 |−1)

2
≥ (1 − 𝛿)

|𝑠 |(|𝑠 |−1)
2 𝛩(𝑤 |𝑠 |(|𝑠 |−1)

2
)

Path reachability
DMatrix 𝑃𝑟[𝑇𝑃 ] s.t. 𝛾 ≥ 𝜖 ≥ (1 − 𝛿)𝑛

𝛩(2ℎ2𝑤) +𝛺(𝑤|𝛼 |)𝑃𝑟[𝐹𝑃 ] s.t. ∃(𝑠, 𝑡) ∈ 𝑝, (𝑠, 𝑡) ≤ (𝛾 − 𝜖
2
) ≤ 1 − (1 − 𝛿)𝑛

TCM 𝑃𝑟[𝑇𝑃 ] 1
𝛩(|𝐸|)

𝑃𝑟[𝐹𝑃 ] s.t. ∃(𝑠, 𝑡) ∈ 𝑝, (𝑠, 𝑡) ≤ (𝛾 − 𝜖) ≤ 1 − (1 − 𝛿)𝑛

𝜖, 𝛿 ∈ (0, 1) are the approximation parameter and error probability, respectively; ℎ(=
√

2
𝜖
) and 𝑤(= 𝑙𝑜𝑔 1

𝛿
) are the width/length and depth of the

bucket array in DMatrix and TCM, respectively; |𝛼 |, |𝛽 |, |𝐸| and |𝑉 | are the number of heavy-hitter edges, heavy-hitter nodes, total edges
and total nodes, respectively, where |𝐸| ≫ |𝛼 | and |𝑉 | ≫ |𝛽 |.
introduce our evaluation criteria and parameter configurations used in
the experiments.

All experiments are performed on a Linux platform with an Intel
Core i9-9900KF CPU (3.60 GHz) and 32 GB DRAM memory, running
Ubuntu. We provide the source code of DMatrix and publish the gen-
erated Twitter-communication stream dataset (at https://github.com/
houchangsheng/DMatrix) so that others can build upon our work.

7.1. Datasets

We choose three real-world datasets. Details of the datasets are
described as follows:

IP-trace stream. We use MAWI IP-trace dataset [22] which are
all collected from the real-world network. Each trace is a pcap file
providing raw packets that were captured for 15 min every day, since
2001 until now, on a trans-Pacific link between Japan and the US.
The dataset is daily updated to include new traffic traces. In the
experiments, we obtain the IP-traces captured on June 11, 2020. The
traces are divided into five epochs in units of three minutes, which
contains 22.7 million packets on average.

Twitter-communication stream. The Twitter graph dataset [23]
consists of all public tweets during a seven-month period from June 1,
2009, to December 31, 2009. Each edge in the graph dataset represents
a communication between two users in the form of a re-tweet. The
edge is weighted by the number of communications between the corre-
sponding source and destination users. For user privacy consideration,
Twitter anonymizes this dataset and the re-tweets between users are
only recorded once. To make the dataset has time-evolving character-
istics, we simulate the process of tweeting between users in the real
world. We first extracted the beginning 24 million user pairs in the
8

dataset. Then we copied each user pair 1 to 9 times and assigned values
to these records in a Pareto distribution. Finally, we arranged them out
of order to form the dataset with a total of nearly 120M records. The
reason why we utilized Pareto distribution to assign values to records
is that Twitter and other web application data are always well-modeled
by Pareto or its variant distribution [24].

DBLP co-author stream. We derived the author-pairs data from the
latest DBLP archive [25]. Regarding 2,630,745 authors as nodes and
29,863,639 author-pairs as edges with the weight of 1 for each edge,
indicating a co-authorship. With the gradual increase of the cooperation
between authors, the co-authorship between them shows the time-
evolving characteristics. Similar to IP-trace and Twitter-communication
datasets, we divided the entire co-author stream data into five pieces
evenly to facilitate the estimation of changes (i.e., heavy-changer) in
authors’ cooperation.

7.2. Metrics

Average relative error. This measure is used for the set of weight-
based queries that return estimated weight, i.e., node, edge and sub-
graph weight queries. Given a graph stream 𝐺 = (𝑉 ,𝐸) received by
now, the relative error of edge weight query is formalized as:

𝐴𝑅𝐸(𝐸) =

∑

∀(𝑥,𝑦)∈𝐸
|𝜔̃(𝑥,𝑦)−𝜔(𝑥,𝑦)|

𝜔(𝑥,𝑦)

|𝐸|

,

where 𝐸 denotes the edge set received by now.
Precision, recall and F1-score. The three metrics are used for

heavy-key and reachability queries. Precision gives the fraction of true
heavy-keys/paths reported over all reported heavy-keys/paths. Recall
gives the fraction of true heavy-keys/paths reported over all true heavy-
keys/paths. F1-score considers both precision and recall, which can be
regarded as the harmonic average of precision and recall.

https://github.com/houchangsheng/DMatrix
https://github.com/houchangsheng/DMatrix
https://github.com/houchangsheng/DMatrix
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Fig. 3. Average relative error of weight-based queries with fixed compression rate (1/700) and varying 𝑤 on IP-trace dataset.
Fig. 4. Average relative error of weight-based queries with fixed compression rate (1/160) and varying 𝑤 on Twitter-communication dataset.
Fig. 5. Average relative error of weight-based queries with fixed compression rate (1/40) and varying 𝑤 on DBLP dataset.
Fig. 6. Average relative error of weight-based queries with fixed 𝑤 = 3 and varying compression rates on IP-trace dataset.
Average query time. The average query time compares the average
time cost of a given query operation.

7.3. Parameter configurations

We evaluate the performance of DMatrix and TCM in terms of
accuracy on the three datasets under the conditions of same number of
buckets and same memory overhead, respectively.

In the experiments with same number of buckets, we set the same
width/length ℎ and depth 𝑤 for both DMatrix and TCM. We evaluated
the accuracy performance with varying compression rates and depths
𝑤 (i.e., number of hash functions), respectively. The compression rate
is defined as the ratio of number of buckets in one layer (i.e., ℎ × ℎ)
to the number of edges in the stream dataset. For example, if we set
ℎ = 246, the compression rate is 𝑐 = (246 × 246)∕42 218 852 ≈ 1∕700,
where 42 218 852 is the total number of edges in IP-trace stream. In
the condition of fixed compression rate with varying 𝑤, we set ℎ to
246, 388, and 865 for the IP-trace, Twitter-communication, and DBLP
datasets such that the compression rates are 1/700, 1/160, and 1/40,
respectively. In the condition of fixed 𝑤 with varying compression
9

rates, we set the number of hash functions to 3. In addition, we set the
heavy-hitter threshold 𝛼 = 0.02, the heavy-changer threshold 𝛽 = 0.03
and the path weight threshold 𝛾 = 0.01 for IP-trace dataset; 𝛼 = 0.002,
𝛽 = 0.0026, 𝛾 = 0.001 for Twitter-communication dataset; and 𝛼 =
8 × 10−6, 𝛽 = 1 × 10−5, 𝛾 = 1 × 10−6 for DBLP dataset.

While for performance comparison with same memory overhead,
We set the number of buckets in TCM to three times the number of
that in DMatrix as the size of a bucket in DMatrix is three times that of
TCM. Thus we simply expanded the length/width of TCM ℎ𝑇𝐶𝑀 to

√

3
times that of DMatrix ℎ𝐷𝑀𝑎𝑡𝑟𝑖𝑥, i.e., ℎ𝐷𝑀𝑎𝑡𝑟𝑖𝑥 is set to 246, 388, and 865
while ℎ𝑇𝐶𝑀 takes the values of 427, 673, and 1499 for IP-trace, Twitter-
communication, and DBLP dataset, respectively. And the thresholds
of heavy-hitter, heavy-changer, and path weight are the same as the
above.

7.4. Experimental results

The following experimental results illustrate the comparison be-
tween DMatrix and TCM in terms of accuracy and efficiency.
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Fig. 7. Average relative error of weight-based queries with fixed 𝑤 = 3 and varying compression rates on Twitter-communication dataset.
Fig. 8. Average relative error of weight-based queries with fixed 𝑤 = 3 and varying compression rates on DBLP dataset.
Fig. 9. Average relative error of heavy-key edge queries on DMatrix and TCM with same number of buckets.
Fig. 10. Average relative error of heavy-key edge queries on DMatrix and TCM with same memory overhead.
Fig. 11. Average relative error of heavy-key node queries on DMatrix and TCM with same number of buckets.
7.4.1. Accuracy of weight-based query

We compare the average relative error of each edge/node weight
received in an epoch. For the subgraph weight query, we randomly
choose 10 nodes received in an epoch and query the sum of the weight
between them.
10
First, we evaluate the accuracy performance with a fixed com-
pression rate (i.e., 1/700, 1/160, and 1/40 for the three datasets,
respectively) and varying 𝑤 (i.e., number of hash functions). Figs. 3–5
show the average relative error of weight-based queries on the three
datasets with the same number of buckets in both DMatrix and TCM.
We can see that regardless of the number of depths 𝑤 in DMatrix/TCM,
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Fig. 12. Average relative error of heavy-key node queries on DMatrix and TCM with same memory overhead.
the average relative error of weight-based query on DMatrix is much
better than that on TCM with the same number of depths. And this is
consistent with our theoretical analysis in Table 2. As the number of
hash functions 𝑤 increases, the average relative error of DMatrix and
TCM gradually decreases, which is an expected result.

Then, we evaluate the accuracy performance with fixed 𝑤 (i.e., num-
ber of hash functions/number of depths) and varying compression rates
for DMatrix and TCM. Figs. 6, 7, and 8 show the experimental results
on the three datasets. Obviously, the average relative error decreases
with the increase of the compression rate in each dataset. The average
estimation error of DMatrix is much lower than that of TCM, especially
in the case of a low compression rate (i.e., more edges are hashed in
each bucket on average). Note that the average estimation error of each
weight-based query is still very high. This is because the compression
of data makes many collisions and the skew characteristics of streams
will expand the estimation error.

However, the relative error of heavy-key query, as shown in Figs. 9,
10, 11, and 12, is very small due to the collisions make less damage to
the weight estimation of heavy-key in the stream. Note that the average
relative error of DMatrix in almost all heavy-key query operations is
lower than that of TCM, in both the conditions of same number of buck-
ets and same memory overhead. Although TCM has more buckets under
the condition of same memory overhead with DMatrix, its performance
is still slightly inferior to DMatrix.

7.4.2. Accuracy of heavy-key and reachability query
We compare the average precision, recall and F1-score of heavy-key

and reachability queries. For the path reachability query, we randomly
choose 10 nodes received in this epoch and query the reachability
between each of them, thus 45 times of reachability query in every
epoch.

Figs. 13 and 14 illustrate the average precision of heavy-key and
reachability queries on DMatrix and TCM under the conditions of
same number of buckets and same memory overhead, respectively.
The average precision of DMatrix is higher or equal to that of TCM
in all queries on datasets of IP-trace and Twitter-communication. In
particular, on queries of heavy-hitter node and heavy-changer node,
the precision of TCM declines significantly, since its relatively large
estimation error on node weight.

Note that almost all heavy-key queries show a very low precision
on the DBLP dataset, whether DMatrix or TCM. We analyze why the
sketch structure is not suitable for this dataset. Fig. 15(a), (b), and (c)
show the edge weight distribution for IP-trace, Twitter-communication,
and DBLP dataset, respectively. For each dataset, the x-label indicates
the range of edge weights. For instance, the edge weights in [1, 143]
are the number of co-authorships between two authors for DBLP in
Fig. 15(c). The 𝑦-axis indicates the number that such frequency appears
in the dataset and the red vertical line indicates the weight thresh-
old of the top-5 heavy-hitter edges. Obviously, the edge frequencies
of all datasets satisfy the Pareto distribution. We also note that the
heavy-hitter edge weight of the IP-trace and Twitter-communication
is extremely large, reaching the order of 108, while the heavy-hitter
edge weight of the DBLP is relatively small, with a maximum edge
11
Fig. 13. Average precision of heavy-key and reachability queries on DMatrix and TCM
with same number of buckets.

weight of 143. According to the weight threshold of the top-5 heavy-
hitter edges and the total sum weight in the dataset, we can derive
a heavy hitter threshold 𝛼. For example, the total edge weight of
IP-trace is 7 195 409 970 and the weight of 144 698 912 is the lower
bound of the top-5 heavy-hitter edges. Then we derive the heavy-hitter
threshold 𝛼 ≤ 144 698 912∕7 195 409 970 ≈ 0.0201 such that the heavy-
hitter edges/nodes can be queried by DMatrix with a high probability.
Similarly, the heavy-hitter thresholds of Twitter-communication and
DBLP are 𝛼 ≤ 0.00378 and 𝛼 ≤ 8.14 × 10−6, respectively. According to
Theorem 4, given 𝛼 ≥

√

2𝜖, DMatrix returns every heavy-hitter node
with a probability of at least 1 − 𝛿. Then we have ℎ =

√

2
𝜖 ≥ 2

𝛼 .
For the DBLP dataset, we should set ℎ𝐷𝐵𝐿𝑃 ≥ 2.45 × 105 to ensure a
high accuracy probability yet we only set ℎ𝐷𝐵𝐿𝑃 = 865 to make the
compression rate of 1/40. Therefore, the high accuracy of heavy-key
queries cannot be guaranteed at this compression rate. As for the IP-
trace dataset, the length of the sketch should be set to ℎ𝐼𝑃−𝑡𝑟𝑎𝑐𝑒 > 99,
and we set it to 246 which makes the compression rate of 1/700 while
ensuring a high accuracy as shown in Figs. 13 and 14.

Figs. 16 and 17 illustrate the average recall of heavy-key and
reachability queries on DMatrix and TCM in the conditions of same
number of buckets and same memory overhead, respectively. We can
see that the average recall of DMatrix is lower or equal to that of TCM in
all queries on both datasets since DMatrix only records a part of the key
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Fig. 14. Average precision of heavy-key and reachability queries on DMatrix and TCM
with same memory overhead.

Fig. 15. Edge weight distribution.

space in its bucket. In short, a heavy-key is not stored in DMatrix’s key
field will result in underreporting while TCM traverses the entire key
space to conduct these queries, thus ensuring a high recall. However,
the time cost of heavy-key query on TCM is orders of magnitude higher
than that of DMatrix as shown in Table 3. Since TCM has to query the
whole key space instead of querying the most likely keys as DMatrix
does.

Figs. 18 and 19 illustrate the F1-score of heavy-key and reachability
queries on DMatrix and TCM in the three datasets. Note that DMatrix
performs far better than TCM on F1-score in the case of same number
of buckets. That is to say, with an acceptable increase in memory
overhead, DMatrix performs better than TCM in terms of accuracy and
efficiency. While under the condition of same memory overhead, they
achieve almost the same performance on F1-score, while DMatrix is
more efficient due to reversible queries.

7.4.3. Update and query efficiency
Table 3 shows the average time cost of updating and querying

process in DMatrix and TCM in the case of same number of buckets.
We note that DMatrix has a higher time cost in updating the sketch.
This is because DMatrix has additional operations on key comparison
and updating indicate field when compare to TCM which only needs to
update the counter field. Also, the same reason is for the slightly higher
time consumption on weight-based queries in DMatrix. However, the
query efficiency on heavy-key of DMatrix is several orders of magnitude
12
Fig. 16. Average recall of heavy-key and reachability queries on DMatrix and TCM
with same number of buckets.

Fig. 17. Average recall of heavy-key and reachability queries on DMatrix and TCM
with same memory overhead.

higher than that TCM due to its partly reversible properties. It is also

noted that the time cost of path reachability query in both sketches is

much higher than other queries. This is because the BFS algorithm they

used is very time-consuming.
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Fig. 18. Average F1-score of heavy-key and reachability queries on DMatrix and TCM
with same number of buckets.

Fig. 19. Average F1-score of heavy-key and reachability queries on DMatrix and TCM
with same memory overhead.

8. Conclusion

We proposed a graph sketch, namely DMatrix, for summary and
analysis graph stream in a sublinear space, using one-pass updating,
and with constant probabilistic error bound guarantee. A key property
of DMatrix is that its data structure maintains both the structure- and
13
Table 3
The average time cost of updating and querying process in DMatrix and TCM.

Process Sketch Average time cost (s)

IP-trace Twitter communication

Updating sketch DMatrix 2.61 1.12
TCM 1.80 0.69

Edge weight DMatrix 3.20e−7 2.62e−7
query TCM 2.93e−7 2.39e−7

Node weight DMatrix 2.91e−6 2.60e−6
query TCM 1.17e−6 8.64e−7

Heavy-hitter DMatrix 4.81e−4 4.49e−4
edge query TCM 2.67 1.11

Heavy-hitter DMatrix 8.89e−3 9.28e−3
node query TCM 1.38 0.18

Heavy-changer DMatrix 9.38e−4 9.53e−4
edge query TCM 8.69 3.04

Heavy-changer DMatrix 0.22 0.23
node query TCM 9.92 0.55

Subgraph weight DMatrix 74.66 19.24
query (10 nodes) TCM 74.43 19.02

Path reachability DMatrix 91.31 23.93
query TCM 92.28 23.68

weight-based information over the graph stream. This is achieved by
utilizing a 3-dimensional storage structure, which stores the adjacency
of different nodes. We apply the MJRTY algorithm to narrow the
error bounds and achieve reversibility to improve query efficiency.
Both theoretical analysis and experimental results demonstrated that
DMatrix is more accurate and efficient than existing solutions.

CRediT authorship contribution statement

Changsheng Hou: Software, Validation, Formal analysis, Writing
– original draft, Writing – review & editing. Bingnan Hou: Concep-
tualization, Methodology, Formal analysis, Writing – original draft,
Writing – review & editing. Tongqing Zhou: Writing – original draft,
Project administration, Supervision. Zhiping Cai: Supervision, Re-
sources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work is supported by the National Key Research and Develop-
ment Program of China (2018YFB1800202).

Appendix A. Notations

The summary of notations are shown in Table A.4.

Appendix B. Error boundary on dmatrix

The following shows the proofs of error boundary on DMatrix in
various query tasks.
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Table A.4
Summary of notations.

Notation Description

𝐺 = ⟨𝑒1 , 𝑒2 ,… , 𝑒𝑚⟩ Graph stream
𝑒 = (𝑥, 𝑦, 𝑓 ; 𝑡) Graph stream element, where 𝑓 is the weight/frequency on

the edge (𝑥, 𝑦), and 𝑡 is the timestamp
ℎ,𝑤 Length (width) and depth of DMatrix
ℎ𝑘(⋅) Hash function
𝐵(𝑖, 𝑗, 𝑘) Bucket index
𝑆(𝑖, 𝑗, 𝑘) Sum in 𝐵(𝑖, 𝑗, 𝑘)
𝐾(𝑖, 𝑗, 𝑘) Key in 𝐵(𝑖, 𝑗, 𝑘)
𝐼(𝑖, 𝑗, 𝑘) Indicator counter of 𝐵(𝑖, 𝑗, 𝑘)
𝜖, 𝛿 Approximation parameter and error probability
𝜔(𝑥, 𝑦), 𝜔̃(𝑥, 𝑦) Weight and estimated weight of edge (𝑥, 𝑦)
𝑈 (𝑥, 𝑦), 𝐿(𝑥, 𝑦) Upper and lower bounds of 𝜔̃(𝑥, 𝑦)
𝜔(𝑥), 𝜔̃(𝑥) Weight and estimated weight of node 𝑥
𝑈 (𝑥), 𝐿(𝑥) Upper and lower bounds of 𝜔̃𝑜𝑢𝑡(𝑥)
 𝑡 , 𝑡−1 Total edge weight in the current and previous epochs
𝛼 ,𝛼 , 𝛽 ,𝛽 Detected heavy-hitter edges, heavy-hitter nodes,

heavy-changer edges and heavy-changer nodes

B.1. Node weight query of dmatrix (proof of Theorem 2)

Proof. From Algorithm 3, we can easily get that 𝜔̃(𝑥) ≥ 𝜔(𝑥). Next,
e states the upper bound of 𝜔̃(𝑥) in terms of 𝜖 and 𝛿. Consider the
xpectation of the total sum of all weight except 𝑥 in its mapped row,

i.e., bucket array 𝐵(𝑖, 𝑗, 𝑘), 𝑗 ∈ [1, ℎ]. It is given by 𝐸[
∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) −

𝜔(𝑥)] = 𝐸[
∑

𝑠≠𝑥,ℎ𝑘(𝑠)=ℎ𝑘(𝑥) 𝜔(𝑠)] ≤
−𝜔(𝑥)

ℎ ≤
√

2𝜖
2 . By Markov’s inequal-

ty, we have

𝑟[
ℎ
∑

𝑗=1
𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥) ≥

√

2𝜖 ] ≤ 1
2
. (B.1)

For each bucket in the 𝑖th row and 𝑘th depth: if 𝐾(𝑖, 𝑗, 𝑘) == (𝑥, ⋅),
then 𝜔̃(𝑥)𝑗,𝑘 − 𝜔(𝑥)𝑗,𝑘 = 𝑆(𝑖,𝑗,𝑘)+𝐼(𝑖,𝑗,𝑘)

2 − 𝜔(𝑥)𝑗,𝑘 ≤ 𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥)𝑗,𝑘
2 , where

, 𝑘 are fixed values, 𝑗 ∈ [1, ℎ] and 𝜔(𝑥)𝑗,𝑘 (𝜔(𝑥)𝑗,𝑘 ≥ 0) denotes the
real outgoing weight components of node 𝑥 in the 𝑗th column and 𝑘th
depth; if 𝐾(𝑖, 𝑗, 𝑘) ≠ (𝑥, ⋅), then 𝜔̃(𝑥)𝑗,𝑘−𝜔(𝑥)𝑗,𝑘 = 𝑆(𝑖,𝑗,𝑘)−𝐼(𝑖,𝑗,𝑘)

2 −𝜔(𝑥)𝑗,𝑘 ≤
𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥)𝑗,𝑘

2 .
Considering the row estimate error in the 𝑘th depth of bucket array,

we have 𝜔̃(𝑥)𝑘 − 𝜔(𝑥) =
∑ℎ

𝑗=1(𝜔̃(𝑥)𝑗,𝑘 − 𝜔(𝑥)𝑗,𝑘) ≤
∑ℎ

𝑗=1 𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥)

2 , where

𝜔(𝑥)𝑘 = 𝜔(𝑥). Then 𝑃𝑟[𝜔̃(𝑥)𝑘 − 𝜔(𝑥) ≥
√

2𝜖
2 ] ≤ 𝑃𝑟[

∑ℎ
𝑗=1 𝑆(𝑖,𝑗,𝑘)−𝜔(𝑥)

2 ≥
√

2𝜖
2 ] ≤ 1

2 due to (B.1).
Since 𝜔̃(𝑥) is the minimum of all 𝜔̃(𝑥)𝑘 in 𝑤 different buckets, we

have 𝑃𝑟[𝜔̃(𝑥) ≤ 𝜔(𝑥) +
√

2𝜖
2 ] = 1 − 𝑃𝑟[𝜔̃(𝑥) ≥ 𝜔(𝑥) +

√

2𝜖
2 ] = 1 −

𝑃𝑟[𝜔̃(𝑥)𝑘 ≥ 𝜔(𝑥) +
√

2𝜖
2 ,∀𝑘] ≥ 1 − ( 12 )

𝑤 = 1 − 𝛿. □

B.2. Heavy-hitter edge query of DMatrix (proof of Theorem 3)

Proof. For a real heavy-hitter edge, (𝑥, 𝑦) has the majority weight in at
least one of its hashed buckets, say 𝐵(𝑖, 𝑗, 𝑘), where the majority weight
in one bucket means 𝜔(𝑥, 𝑦) > 1

2𝑆(𝑖, 𝑗, 𝑘). Then, (𝑥, 𝑦) will occupy the
key field 𝐾(𝑖, 𝑗, 𝑘) of this bucket. Thus DMatrix will report (𝑥, 𝑦) due to
Algorithm 4.

Only when (𝑥, 𝑦) is not the majority weight for all 𝑤 hashed buckets,
i.e., 𝜔(𝑥, 𝑦) ≤ 𝑆(𝑖,𝑗,𝑘)

2 , DMatrix does not report (𝑥, 𝑦). The probability
that it occurs is 𝑃𝑟[𝜔(𝑥, 𝑦) ≤ 𝑆(𝑖,𝑗,𝑘)

2 ,∀𝑘] = 𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥
𝜔(𝑥, 𝑦),∀𝑘]. Given that 𝛼 ≥ 𝜖, we have 𝜔(𝑥, 𝑦) ≥ 𝛼 ≥ 𝜖 which gives
𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥ 𝜖 ,∀𝑘] ≤ ( 12 )

𝑤 = 𝛿 due to (1). Therefore,
assuming that 𝛼 ≥ 𝜖, the probability of reporting a heavy-hitter edge is
at least 1 − 𝛿.

For a non-heavy-hitter edge (𝑠, 𝑑) with 𝜔(𝑠, 𝑑) ≤ (𝛼 − 𝜖
2 ) , the

ondition is that 𝜔̃(𝑠, 𝑑) ≥ 𝛼 , thus 𝜔̃(𝑠, 𝑑)−𝜔(𝑠, 𝑑) ≥ 𝛼−(𝛼− 𝜖
2 ) = 𝜖

2 .
From Theorem 1, we have 𝑃𝑟[𝜔̃(𝑠, 𝑑)−𝜔(𝑠, 𝑑) ≥ 𝜖

2 ] ≤ 𝛿. In other words,
he probability of reporting (𝑠, 𝑑) with a upper weight bound of (𝛼− 𝜖

2 )
s a heavy-hitter edge is at most 𝛿. □
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

B.3. Heavy-hitter node query of DMatrix (proof of Theorem 4)

Proof. We first prove that the probability of reporting a real heavy-
hitter node, say 𝑥. If (𝑥, ⋅) has the majority weight in any of its hashed
buckets, say 𝐵(𝑖, 𝑗, 𝑘), where the majority weight in one bucket means
𝜔(𝑥, ⋅) > 1

2𝑆(𝑖, 𝑗, 𝑘). Then, (𝑥, ⋅) will occupy the key field 𝐾(𝑖, 𝑗, 𝑘) of this
bucket. Thus DMatrix will report 𝑥 due to Algorithm 5.

Dmatrix fails to report 𝑥 only if (𝑥, ⋅) is not the majority weight
in any of its hashed buckets, i.e., 𝜔(𝑥, ⋅) ≤ 𝑆(𝑖,𝑗,𝑘)

2 . The probability
that it occurs is 𝑃𝑟[𝜔(𝑥)𝑗,𝑘 ≤ 𝑆(𝑖,𝑗,𝑘)

2 ,∀𝑗, 𝑘] = 𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥)𝑗,𝑘 ≥
(𝑥)𝑗,𝑘,∀𝑗, 𝑘] ≤ 𝑃𝑟[

∑ℎ
𝑗=1 𝑆(𝑖, 𝑗, 𝑘)−𝜔(𝑥) ≥ 𝜔(𝑥),∀𝑘]. Given that 𝛼 ≥

√

2𝜖,
e have 𝜔(𝑥) ≥ 𝛼 ≥

√

2𝜖 which gives 𝑃𝑟[
∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥) ≥
2𝜖 ,∀𝑘] ≤ ( 12 )

𝑤 = 𝛿 due to (B.1). Thus, a heavy hitter node is reported
ith a probability at least 1 − 𝛿 assuming that 𝛼 ≥

√

2𝜖.
We next prove the probability of reporting a non-heavy-hitter node,

say 𝑠, with 𝜔(𝑠) ≤ (𝛼 −
√

2𝜖
2 ) . The condition is that 𝜔̃(𝑠) ≥ 𝛼 ,

thus 𝜔̃(𝑠) − 𝜔(𝑠) ≥ 𝛼 − (𝛼 −
√

2𝜖
2 ) =

√

2𝜖
2 . From Theorem 2,

we have 𝑃𝑟[𝜔̃(𝑠) − 𝜔(𝑠) ≥
√

2𝜖
2 ] ≤ 𝛿. In other words, 𝑠 with a

pper outgoing/incoming weight bound of (𝛼 −
√

2𝜖
2 ) is reported as

a heavy-hitter node with a probability at most 𝛿. □

B.4. Heavy-changer edge query of DMatrix (proof of Theorem 5)

Recall that the estimated weight change 𝐷̃(𝑥, 𝑦) relies on the upper
bound 𝑈 (𝑥, 𝑦) and lower bound 𝐿(𝑥, 𝑦) of 𝜔(𝑥, 𝑦), we first give the error
ounds of 𝑈 (𝑥, 𝑦) and 𝐿(𝑥, 𝑦).

emma 1. 𝜔(𝑥, 𝑦) ≤ 𝑈 (𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖
2 with a probability at least

1 − 𝛿, where  is the total edge weight.

Proof. Algorithm 6 gives that 𝑈 (𝑥, 𝑦) = 𝜔̃(𝑥, 𝑦) and Theorem 1 shows
the error bounds for 𝜔̃(𝑥, 𝑦). Thus we have 𝜔(𝑥, 𝑦) ≤ 𝑈 (𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦)+ 𝜖

2
ith a probability at least 1 − 𝛿 □

emma 2. 𝜔(𝑥, 𝑦) − 𝜖 ≤ 𝐿(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) with a probability at least
1 − 𝛿, where  is the total edge weight.

Proof. From Algorithm 2, we can easily get that 𝐿(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦).
ext, we states the lower bound of 𝐿(𝑥, 𝑦) in terms of 𝜖 and 𝛿. Con-

idering inside one bucket 𝐵(𝑖, 𝑗, 𝑘), if (𝑥, 𝑦) is the majority weight
i.e., 𝐾(𝑖, 𝑗, 𝑘) == (𝑥, 𝑦)), we have 𝐿(𝑥, 𝑦)𝑘 = 𝐼(𝑖, 𝑗, 𝑘), where 𝑘 ∈ [1, 𝑤].
heorem 1 gives that 𝜔(𝑥, 𝑦) ≤ 𝜔̃(𝑥, 𝑦) = 𝑆(𝑖,𝑗,𝑘)+𝐼(𝑖,𝑗,𝑘)

2 , which implies
𝜔(𝑥, 𝑦) − 𝐿𝑘(𝑥, 𝑦) ≤ 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦).

If (𝑥, 𝑦) is not the majority weight in 𝐵(𝑖, 𝑗, 𝑘) (i.e., 𝐾(𝑖, 𝑗, 𝑘) ≠ (𝑥, 𝑦)),
e have 𝐿(𝑥, 𝑦)𝑘 = 0. Then 𝜔(𝑥, 𝑦)−𝐿(𝑥, 𝑦)𝑘 = 𝜔(𝑥, 𝑦) ≤ 𝑆(𝑖, 𝑗, 𝑘)−𝜔(𝑥, 𝑦).

Combining both cases, we have 𝑃𝑟[𝜔(𝑥, 𝑦) − 𝐿(𝑥, 𝑦) ≥ 𝜖 ] =
𝑟[𝜔(𝑥, 𝑦) − 𝐿(𝑥, 𝑦)𝑘 ≥ 𝜖 ,∀𝑘] ≤ 𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥ 𝜖 ,∀𝑘] ≤
1
2 )

𝑤 = 𝛿 due to (1). Thus, we proved that the lower bound of 𝐿(𝑥, 𝑦) is
𝜔(𝑥, 𝑦) − 𝜖 with a probability at least 1 − 𝛿. □

From Algorithm 6, we have 𝐷̃(𝑥, 𝑦) ← 𝑚𝑎𝑥{|𝑈 𝑡(𝑥, 𝑦) − 𝐿𝑡−1(𝑥, 𝑦)|,
|𝐿𝑡(𝑥, 𝑦) − 𝑈 𝑡−1(𝑥, 𝑦)|}. Now we provide the error bounds of 𝐷̃(𝑥, 𝑦).

emma 3. 𝐷(𝑥, 𝑦) ≤ 𝐷̃(𝑥, 𝑦) ≤ 𝐷(𝑥, 𝑦) + 𝜖( 𝑡 +  𝑡−1) with a probability
t least (1 − 𝛿)2, where  𝑡 and  𝑡−1 denote the total sum of all weight in
he current and previous epochs, respectively.

roof. Both 𝑈 (𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are the true upper and lower bounds of
(𝑥, 𝑦), thus the lower bound of 𝐷̃(𝑥, 𝑦) is 𝐷(𝑥, 𝑦).

From Lemmas 1 and 2, we have |𝑈 𝑡(𝑥, 𝑦) − 𝐿𝑡−1(𝑥, 𝑦)| ≤
𝜔𝑡(𝑥, 𝑦) + 𝜖 𝑡

2 − (𝜔𝑡−1(𝑥, 𝑦) − 𝜖 𝑡−1)| = 𝐷(𝑥, 𝑦) + 𝜖( 
𝑡

2 +  𝑡−1) ≤ 𝐷(𝑥, 𝑦) +
𝜖( 𝑡+ 𝑡−1) with a probability of (1−𝛿)2 since 𝑈 𝑡(𝑥, 𝑦) and 𝐿𝑡−1(𝑥, 𝑦) are
ndependent. Similarly, we have |𝑈 𝑡−1(𝑥, 𝑦) − 𝐿𝑡(𝑥, 𝑦)| ≤ 𝐷(𝑥, 𝑦)+ 𝜖( 𝑡 +
𝑡−1) with a probability at least (1 − 𝛿)2. As 𝐷̃(𝑥, 𝑦) ←
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𝑚𝑎𝑥{|𝑈 𝑡(𝑥, 𝑦) − 𝐿𝑡−1(𝑥, 𝑦)|, |𝐿𝑡(𝑥, 𝑦) − 𝑈 𝑡−1(𝑥, 𝑦)|}, the upper bound of
𝐷̃(𝑥, 𝑦) proved. □

The following gives the proof of Theorem 5.

Proof. For a real heavy-changer edge, (𝑥, 𝑦) has the majority weight in
at least one of its hashed buckets. Due to 𝐷̃(𝑥, 𝑦) ≥ 𝐷(𝑥, 𝑦) ≥ 𝛽̃, edge
(𝑥, 𝑦) must be reported. The unexpected situation is that (𝑥, 𝑦) is not
stored in any key fields at both the previous and current bucket array.
However, it meets the condition that 𝜔𝑡(𝑥, 𝑦) ≥ 𝛽̃ or 𝜔𝑡−1(𝑥, 𝑦) ≥ 𝛽̃
as (𝑥, 𝑦) is a real heavy-changer. In this case, (𝑥, 𝑦) will not be reported.
From Theorem 3, we can conclude that (𝑥, 𝑦) is not reported with a
probability at most 𝛿 assuming that 𝛽̃

𝜖 ≥ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} and 𝛽 ≥ 𝜖.
For a non-heavy changer edge (𝑠, 𝑑) with 𝐷(𝑠, 𝑑) ≤ 𝛽̃−𝜖( 𝑡+ 𝑡−1),

the falsely returned (𝑠, 𝑑) satisfies 𝐷(𝑠, 𝑑) ≤ 𝛽̃ ≤ 𝐷̃(𝑠, 𝑑). Assuming
that 𝐷(𝑠, 𝑑) ≤ 𝛽̃ − 𝜖( 𝑡 +  𝑡−1), then 𝛽̃ − 𝐷(𝑠, 𝑑) ≥ 𝜖( 𝑡 +  𝑡−1).
From Lemma 3, we have 𝐷(𝑠, 𝑑) ≤ 𝐷̃(𝑠, 𝑑) ≤ 𝐷(𝑠, 𝑑) + 𝜖( 𝑡 +  𝑡−1)
with a probability at least (1 − 𝛿)2. In other words, the probability of
𝐷̃(𝑠, 𝑑)−𝐷(𝑠, 𝑑) ≥ 𝜖( 𝑡+ 𝑡−1) is at most 1−(1−𝛿)2, that is, the probability
of falsely reporting a non-heavy-changer edge is at most 1−(1−𝛿)2. □

B.5. Heavy-changer node query of DMatrix (proof of Theorem 6)

Recall that the estimate of weight change 𝐷̃(𝑥) relies on the upper
bound 𝑈 (𝑥) and lower bound 𝐿(𝑥) of 𝜔(𝑥), we first give the error bounds
of 𝑈 (𝑥) and 𝐿(𝑥).

Lemma 4. 𝜔(𝑥) ≤ 𝑈 (𝑥) ≤ 𝜔(𝑥) +
√

2𝜖
2 with a probability at least 1 − 𝛿,

where  is the total weight received so far.

Proof. Algorithm 7 gives that 𝑈 (𝑥) = 𝜔̃(𝑥) and Theorem 2 shows the
error bounds for 𝜔̃(𝑥). Thus we have 𝜔(𝑥) ≤ 𝑈 (𝑥) ≤ 𝜔(𝑥) +

√

2𝜖
2 with a

robability at least 1 − 𝛿 □

emma 5. 𝜔(𝑥) −
√

2𝜖 ≤ 𝐿(𝑥) ≤ 𝜔(𝑥) with a probability at least 1 − 𝛿,
where  is the total received so far.

Proof. From Algorithm 3, we can easily get that 𝐿(𝑥) ≤ 𝜔(𝑥). Next,
we states the lower bound of 𝐿(𝑥) in terms of 𝜖 and 𝛿. Considering
the mapped row buckets 𝐵(𝑖, 𝑗, 𝑘) of node 𝑥, where 𝑖 and 𝑘 are fixed
and 𝑗 ∈ [1, ℎ]. For every bucket in this row, if 𝐾(𝑖, 𝑗, 𝑘) == (𝑥, ⋅), then
(𝑥)𝑗,𝑘 = 𝐼(𝑖, 𝑗, 𝑘); otherwise (i.e., 𝐾(𝑖, 𝑗, 𝑘) ≠ (𝑥, ⋅)) 𝐿(𝑥)𝑗,𝑘 = 0 where

𝐿(𝑥)𝑗,𝑘 denotes the lower estimation of node 𝑥’s outgoing/incoming
weight component in the 𝑗-column and 𝑘th depth of the bucket array.

From Theorem 2, we have 𝜔(𝑥)𝑗,𝑘 ≤ 𝜔̃(𝑥)𝑗,𝑘 = 𝑆(𝑖,𝑗,𝑘)+𝐼(𝑖,𝑗,𝑘)
2 in the

ase of (𝑥, ⋅) == 𝐾(𝑖, 𝑗, 𝑘), which implies 𝜔(𝑥)𝑗,𝑘 − 𝐿(𝑥)𝑗,𝑘 ≤ 𝑆(𝑖, 𝑗, 𝑘) −
(𝑥)𝑗,𝑘; otherwise (i.e., (𝑥, ⋅) ≠ 𝐾(𝑖, 𝑗, 𝑘)), 𝜔(𝑥)𝑗,𝑘 − 𝐿(𝑥)𝑗,𝑘 = 𝜔(𝑥)𝑗,𝑘 ≤

𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥)𝑗,𝑘.
Combining both cases and summing the row up, we have 𝜔(𝑥) −

𝐿(𝑥)𝑘 ≤
∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥). Then 𝑃𝑟[𝜔(𝑥) − 𝐿(𝑥) ≥ 𝜖 ] = 𝑃𝑟[𝜔(𝑥) −
𝐿(𝑥)𝑘 ≥

√

2𝜖 ,∀𝑘] ≤ 𝑃𝑟[
∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥
√

2𝜖 ,∀𝑘] ≤ ( 12 )
𝑤 = 𝛿

ue to (B.1). Thus, we proved that the lower bound of 𝐿(𝑥) is 𝜔(𝑥) −
2𝜖 with a probability at least 1 − 𝛿. □

From Algorithm 7, we have 𝐷̃(𝑥) ← 𝑚𝑎𝑥{|𝑈 𝑡(𝑥) − 𝐿𝑡−1(𝑥)|,
|𝐿𝑡(𝑥) − 𝑈 𝑡−1(𝑥)|}. Now we provide the error bounds of 𝐷̃(𝑥).

Lemma 6. 𝐷(𝑥) ≤ 𝐷̃(𝑥) ≤ 𝐷(𝑥) +
√

2𝜖( 𝑡 +  𝑡−1) with a probability at
least (1 − 𝛿)2, where  𝑡 and  𝑡−1 denote the total sum of all weight in the
current and previous epochs, respectively.

Proof. Both 𝑈 (𝑥) and 𝐿(𝑥) are the true upper and lower bounds of
𝐷(𝑥), thus the lower bound of 𝐷̃(𝑥) is 𝐷(𝑥).

From Lemmas 4 and 5, we have |𝑈 𝑡(𝑥) − 𝐿𝑡−1(𝑥)| ≤
|𝜔𝑡(𝑥) +

√

2𝜖 𝑡
− (𝜔𝑡−1(𝑥) −

√

2𝜖 𝑡−1)| = 𝐷(𝑥, 𝑦) +
√

2𝜖( 
𝑡
+  𝑡−1) ≤
15

2 2 w
𝐷(𝑥, 𝑦)+
√

2𝜖( 𝑡+ 𝑡−1) with a probability of at least (1−𝛿)2 since 𝑈 𝑡(𝑥)
and 𝐿𝑡−1(𝑥) are independent. Similarly, we have |𝑈 𝑡−1(𝑥) − 𝐿𝑡(𝑥)| ≤
𝐷(𝑥) +

√

2𝜖( 𝑡 +  𝑡−1) with a probability at least (1 − 𝛿)2. As 𝐷̃(𝑥) =
𝑚𝑎𝑥{|𝑈 𝑡(𝑥) − 𝐿𝑡−1(𝑥)|, |𝐿𝑡(𝑥) − 𝑈 𝑡−1(𝑥)|}, the upper bound of 𝐷̃(𝑥)
roved. □

Then, we give the proof of Theorem 6.

roof. We first prove the probability of reporting a real heavy-changer
ode, say 𝑥. If 𝑥 has the majority weight in any one of its hashed
uckets, it must be reported due to 𝐷̃(𝑥) ≥ 𝐷(𝑥) ≥ 𝛽̃. Node 𝑥 is not
eported only if it is not stored in any key fields at both the previous and
urrent bucket array. However, it meets the condition that 𝜔𝑡(𝑥) ≥ 𝛽̃
r 𝜔𝑡−1(𝑥, 𝑦) ≥ 𝛽̃ as 𝑥 is a real heavy-changer. From Theorem 4, we can
onclude that 𝑥 is not reported with a probability at most 𝛿 assuming
hat 𝛽̃

√

2𝜖
≥ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} and 𝛽 ≥

√

2𝜖.
We next prove the probability that DMatrix reports a non-heavy

changer node, say 𝑠 with 𝐷(𝑠) ≤ 𝛽̃ −
√

2𝜖( 𝑡 +  𝑡−1). The falsely
eturned 𝑠 satisfies 𝐷(𝑠) ≤ 𝛽̃ ≤ 𝐷̃(𝑠). Assuming that 𝐷(𝑠) ≤ 𝛽̃ −
2𝜖( 𝑡 +  𝑡−1), then 𝛽̃ − 𝐷(𝑠) ≥

√

2𝜖( 𝑡 +  𝑡−1). From Lemma 6, we
ave 𝐷(𝑠) ≤ 𝐷̃(𝑠) ≤ 𝐷(𝑠) +

√

2𝜖( 𝑡 +  𝑡−1) with a probability at least
(1− 𝛿)2. In other words, the probability of 𝐷̃(𝑠) −𝐷(𝑠) ≥

√

2𝜖( 𝑡 + 𝑡−1)
s at most 1 − (1 − 𝛿)2, that is, the probability of falsely reporting a
on-heavy-changer node is at most 1 − (1 − 𝛿)2. □

ppendix C. Error boundary on TCM

The following shows the probabilistic accuracy guarantee and
roofs of error boundary on TCM in various query tasks.

.1. Edge weight query of TCM

heorem 9. Given the current total edge weight  , the edge weight
stimation of TCM satisfies 𝜔(𝑥, 𝑦) ≤ 𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖 with a
robability of at least 1 − 𝛿.

roof. From the edge weight query algorithm of TCM, we can easily
et that 𝜔̃(𝑥, 𝑦) ≥ 𝜔(𝑥, 𝑦). Next, we show the upper bound of 𝜔̃(𝑥, 𝑦). As
ith the proof of Theorem 1, we first focus on the expectation and use
arkov’s inequality to derive equation (1), i.e., 𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥
 ] ≤ 1

2 .
We can easily get that 𝜔̃(𝑥, 𝑦)𝑘−𝜔(𝑥, 𝑦) = 𝑆(𝑖, 𝑗, 𝑘)−𝜔(𝑥, 𝑦). Therefore,

we have 𝑃𝑟[𝜔̃(𝑥, 𝑦)𝑘 − 𝜔(𝑥, 𝑦) ≥ 𝜖 ] = 𝑃𝑟[𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥, 𝑦) ≥ 𝜖 ] ≤ 1
2

due to (1).
Since 𝜔̃(𝑥, 𝑦) is the minimum of all 𝜔̃(𝑥, 𝑦)𝑘 in 𝑤 different buckets,

we have 𝑃𝑟[𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦) + 𝜖 ] = 1 − 𝑃𝑟[𝜔̃(𝑥, 𝑦) ≥ 𝜔(𝑥, 𝑦) + 𝜖 ] =
− 𝑃𝑟[𝜔̃(𝑥, 𝑦)𝑘 ≥ 𝜔(𝑥, 𝑦) + 𝜖 ,∀𝑘] ≥ 1 − ( 12 )

𝑤 = 1 − 𝛿. □

C.2. Node weight query of TCM

Theorem 10. Given the current total edge weight  , the node weight
estimation result of TCM satisfies 𝜔(𝑥) ≤ 𝜔̃(𝑥) ≤ 𝜔(𝑥) +

√

2𝜖 with a
robability of at least 1 − 𝛿.

Proof. From the node weight query algorithm of TCM, we can eas-
ily get that 𝜔̃(𝑥) ≥ 𝜔(𝑥). Next, we states the upper bound of 𝜔̃(𝑥)
in terms of 𝜖 and 𝛿. As with the proof of Theorem 2, we consider
the expectation and use Markov’s inequality to derive equation (B.1),
i.e., 𝑃𝑟[∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥) ≥
√

2𝜖 ] ≤ 1
2 .

For each bucket in the 𝑖th row and 𝑘th depth, we have 𝜔̃(𝑥)𝑗,𝑘 −
(𝑥)𝑗,𝑘 = 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥)𝑗,𝑘, where 𝑖, 𝑘 are fixed values, 𝑗 ∈ [1, ℎ] and
(𝑥)𝑗,𝑘 (𝜔(𝑥)𝑗,𝑘 ≥ 0) denotes the real outgoing weight components of
ode 𝑥 in the 𝑗th column and 𝑘th depth.

Considering the row estimate error in the 𝑘th depth of bucket array,
e have 𝜔̃(𝑥) − 𝜔(𝑥) =

∑ℎ (𝜔̃(𝑥) − 𝜔(𝑥) ) =
∑ℎ 𝑆(𝑖, 𝑗, 𝑘) − 𝜔(𝑥),
𝑘 𝑗=1 𝑗,𝑘 𝑗,𝑘 𝑗=1
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where 𝜔(𝑥)𝑘 = 𝜔(𝑥). Then 𝑃𝑟[𝜔̃(𝑥)𝑘−𝜔(𝑥) ≥
√

2𝜖 ] = 𝑃𝑟[
∑ℎ

𝑗=1 𝑆(𝑖, 𝑗, 𝑘)−
𝜔(𝑥) ≥

√

2𝜖 ] ≤ 1
2 due to (B.1).

Since 𝜔̃(𝑥) is the minimum of all 𝜔̃(𝑥)𝑘 in 𝑤 different buckets, we
have 𝑃𝑟[𝜔̃(𝑥) ≤ 𝜔(𝑥) +

√

2𝜖 ] = 1 − 𝑃𝑟[𝜔̃(𝑥) ≥ 𝜔(𝑥) +
√

2𝜖 ] =
− 𝑃𝑟[𝜔̃(𝑥)𝑘 ≥ 𝜔(𝑥) +

√

2𝜖 ,∀𝑘] ≥ 1 − ( 12 )
𝑤 = 1 − 𝛿. □

C.3. Heavy-hitter edge query of TCM

Theorem 11. The probability that TCM returns every heavy-hitter edge is
1. For a non-heavy-hitter edge whose weight is not more than (𝛼 − 𝜖) , the
probability of falsely returning it as a heavy-hitter edge is at most 𝛿.

Proof. Since the heavy-hitter edge query algorithm of TCM is imple-
mented by traversing the entire key space, for a real heavy-hitter edge
(𝑥, 𝑦), TCM will definitely report it, i.e., the probability of reporting a
heavy-hitter edge is 1.

For a non-heavy-hitter edge (𝑠, 𝑑) with 𝜔(𝑠, 𝑑) ≤ (𝛼 − 𝜖) , the
condition is that 𝜔̃(𝑠, 𝑑) ≥ 𝛼 , thus 𝜔̃(𝑠, 𝑑)−𝜔(𝑠, 𝑑) ≥ 𝛼−(𝛼−𝜖) = 𝜖 .
According to Theorem 9, we have 𝑃𝑟[𝜔̃(𝑠, 𝑑)−𝜔(𝑠, 𝑑) ≥ 𝜖 ] ≤ 𝛿. In other
words, the probability of reporting (𝑠, 𝑑) with a upper weight bound of
(𝛼 − 𝜖) as a heavy-hitter edge is at most 𝛿. □

C.4. Heavy-hitter node query of TCM

Theorem 12. The probability that TCM returns every heavy-hitter node is
1. For a non-heavy-hitter node whose weight is not more than (𝛼 −

√

2𝜖) ,
he probability of falsely returning it as a heavy-hitter node is at most 𝛿.

roof. Since the heavy-hitter node query algorithm of TCM is imple-
ented by traversing the key space, for a real heavy-hitter node 𝑥, TCM
ill definitely report it, i.e., the probability of reporting a heavy-hitter
ode is 1.

For a non-heavy-hitter node 𝑠 with 𝜔(𝑠) ≤ (𝛼−
√

2𝜖) . The condition
is that 𝜔̃(𝑠) ≥ 𝛼 , thus 𝜔̃(𝑠)−𝜔(𝑠) ≥ 𝛼−(𝛼−

√

2𝜖) =
√

2𝜖 . According
to Theorem 10, we have 𝑃𝑟[𝜔̃(𝑠) −𝜔(𝑠) ≥

√

2𝜖 ] ≤ 𝛿. In other words, 𝑠
with a upper outgoing/incoming weight bound of (𝛼−

√

2𝜖) is reported
as a heavy-hitter node with a probability at most 𝛿. □

C.5. Heavy-changer edge query of TCM

Theorem 13. Let  𝑡 and  𝑡−1 denote the total sum of all weight in the
current and previous epochs. For a real heavy-changer edge whose weight is
not less than 𝛽̃+𝜖 ⋅𝑚𝑎𝑥{ 𝑡, 𝑡−1}, the probability that TCM returns every
heavy-changer edge is at least (1−𝛿)2. For a non-heavy-changer edge whose
weight is not more than 𝛽̃ − 𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡, 𝑡−1}, the probability of falsely
returning it as a heavy-changer edge is at most 1 − (1 − 𝛿)2.

Proof. For a real heavy-changer edge (𝑥, 𝑦) with 𝐷(𝑥, 𝑦) ≥ 𝛽̃ + 𝜖 ⋅
𝑚𝑎𝑥{ 𝑡, 𝑡−1}, if TCM reports it correctly, then it satisfies 𝐷(𝑥, 𝑦) ≥
𝛽̃ and 𝐷̃(𝑥, 𝑦) ≥ 𝛽̃. According to Theorem 9, we deduce that the
probability that 𝜔̃(𝑥, 𝑦) satisfies 𝜔(𝑥, 𝑦) ≤ 𝜔̃(𝑥, 𝑦) ≤ 𝜔(𝑥, 𝑦)+𝜖 is at least
1−𝛿. From 𝜔𝑡(𝑥, 𝑦) ≤ 𝜔̃𝑡(𝑥, 𝑦) ≤ 𝜔𝑡(𝑥, 𝑦)+𝜖 𝑡 and 𝜔𝑡−1(𝑥, 𝑦) ≤ 𝜔̃𝑡−1(𝑥, 𝑦) ≤
𝜔𝑡−1(𝑥, 𝑦) + 𝜖 𝑡−1, we deduce that the probability that 𝐷̃(𝑥, 𝑦) satisfies
𝐷̃(𝑥, 𝑦) ≥ 𝐷(𝑥, 𝑦) − 𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} is at least (1 − 𝛿)2. Then, we have
𝐷̃(𝑥, 𝑦) ≥ 𝛽̃ with a probability at least (1−𝛿)2, i.e., the probability that
TCM returns every heavy-changer edge is at least (1 − 𝛿)2.

For a non-heavy changer edge (𝑠, 𝑑) with 𝐷(𝑠, 𝑑) ≤ 𝛽̃ − 𝜖 ⋅
𝑚𝑎𝑥{ 𝑡, 𝑡−1}, the falsely returned (𝑠, 𝑑) satisfies 𝐷(𝑠, 𝑑) ≤ 𝛽̃ ≤ 𝐷̃(𝑠, 𝑑).
According to Theorem 9, we deduce that the probability that 𝜔̃(𝑠, 𝑑)
satisfies 𝜔(𝑠, 𝑑) ≤ 𝜔̃(𝑠, 𝑑) ≤ 𝜔(𝑠, 𝑑) + 𝜖 is at least 1 − 𝛿. From 𝜔𝑡(𝑠, 𝑑) ≤
𝜔̃𝑡(𝑠, 𝑑) ≤ 𝜔𝑡(𝑠, 𝑑) + 𝜖 𝑡 and 𝜔𝑡−1(𝑠, 𝑑) ≤ 𝜔̃𝑡−1(𝑠, 𝑑) ≤ 𝜔𝑡−1(𝑠, 𝑑) + 𝜖 𝑡−1,
we deduce that the probability that 𝐷̃(𝑠, 𝑑) satisfies 𝐷̃(𝑠, 𝑑) ≤ 𝐷(𝑠, 𝑑) +
𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} is at least (1 − 𝛿)2. Then, we have 𝐷̃(𝑠, 𝑑) ≤ 𝛽̃
with a probability at least (1 − 𝛿)2. In other words, the probability of
𝐷̃(𝑠, 𝑑) ≥ 𝛽̃ is at most 1 − (1 − 𝛿)2, that is, the probability of falsely
reporting a non-heavy-changer edge is at most 1 − (1 − 𝛿)2. □
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C.6. Heavy-changer node query of TCM

Theorem 14. Let  𝑡 and  𝑡−1 denote the total sum of all weight in the
current and previous epochs. For a real heavy-changer node whose weight
is not less than 𝛽̃+

√

2𝜖 ⋅𝑚𝑎𝑥{ 𝑡, 𝑡−1}, the probability that TCM returns
very heavy-changer node is at least (1−𝛿)2. For a non-heavy-changer node
hose weight is not more than 𝛽̃ −

√

2𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡, 𝑡−1}, the probability
of falsely returning it as a heavy-changer node is at most 1 − (1 − 𝛿)2.

roof. For a real heavy-changer node 𝑥 with 𝐷(𝑥) ≥ 𝛽̃ +
√

2𝜖 ⋅
𝑎𝑥{ 𝑡, 𝑡−1}, if TCM reports it correctly, then it satisfies 𝐷(𝑥) ≥
̃ and 𝐷̃(𝑥) ≥ 𝛽̃. According to Theorem 10, we deduce that the
robability that 𝜔̃(𝑥) satisfies 𝜔(𝑥) ≤ 𝜔̃(𝑥) ≤ 𝜔(𝑥) +

√

2𝜖 is at least
− 𝛿. From 𝜔𝑡(𝑥) ≤ 𝜔̃𝑡(𝑥) ≤ 𝜔𝑡(𝑥) +

√

2𝜖 𝑡 and 𝜔𝑡−1(𝑥) ≤ 𝜔̃𝑡−1(𝑥) ≤
𝑡−1(𝑥) +

√

2𝜖 𝑡−1, we deduce that the probability that 𝐷̃(𝑥) satisfies
̃ (𝑥) ≥ 𝐷(𝑥) −

√

2𝜖 ⋅ 𝑚𝑎𝑥{ 𝑡, 𝑡−1} is at least (1 − 𝛿)2. Then, we have
̃ (𝑥) ≥ 𝛽̃ with a probability at least (1 − 𝛿)2, i.e., the probability that
CM returns every heavy-changer node is at least (1 − 𝛿)2.

For a non-heavy changer node 𝑠 with 𝐷(𝑠) ≤ 𝛽̃ −
√

2𝜖 ⋅ 𝑚𝑎𝑥
{ 𝑡, 𝑡−1}, the falsely returned 𝑠 satisfies 𝐷(𝑠) ≤ 𝛽̃ ≤ 𝐷̃(𝑠). According
o Theorem 10, we deduce that the probability that 𝜔̃(𝑠) satisfies 𝜔(𝑠) ≤
̃ (𝑠) ≤ 𝜔(𝑠) +

√

2𝜖 is at least 1 − 𝛿. From 𝜔𝑡(𝑠) ≤ 𝜔̃𝑡(𝑠) ≤ 𝜔𝑡(𝑠) +
√

2𝜖 𝑡 and 𝜔𝑡−1(𝑠) ≤ 𝜔̃𝑡−1(𝑠) ≤ 𝜔𝑡−1(𝑠) +
√

2𝜖 𝑡−1, we deduce that the
robability that 𝐷̃(𝑠) satisfies 𝐷̃(𝑠) ≤ 𝐷(𝑠)+

√

2𝜖⋅𝑚𝑎𝑥{ 𝑡, 𝑡−1} is at least
1 − 𝛿)2. Then, we have 𝐷̃(𝑠) ≤ 𝛽̃ with a probability at least (1 − 𝛿)2.
n other words, the probability of 𝐷̃(𝑠) ≥ 𝛽̃ is at most 1− (1− 𝛿)2, that
s, the probability of falsely reporting a non-heavy-changer node is at
ost 1 − (1 − 𝛿)2. □
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