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Abstract

With the development of edge computing, edge storage

solutions are attracting widespread attention. When

facing the requirements of lower latency and faster

access speed from end devices, edge storage solutions

are considered to be an alternative to the cloud.

However, edges are usually owned by small organiza-

tions which have limited operations and maintenance

capabilities. This makes these edge devices can be ea-

sily disabled by external attacks or internal hardware

failures. Besides, the heterogeneity of the edge devices

will also make it difficult to price the edge resources

uniformly. To tackle these problems, we propose

SmartStore: an auction mechanism based on block-

chain to allocate edge resources. Considering cen-

tralized solutions have access bottlenecks and trust

issues, we built SmartStore on the smart contract. With

Bayesian game theory, SmartStore can analyze how

data owners (DO) and edges price the resources can

maximize their benefits. From an economic perspec-

tive, both DO and edges can make full use of edge

heterogeneous resources with SmartStore. Besides, a

two‐stage submission strategy is proposed to complete

the sealed auction. Furthermore, considering the

Haiwen Chen and Jiaping Yu contributed equally to the article.

https://orcid.org/0000-0001-8031-8008
https://orcid.org/0000-0003-4367-3179
https://orcid.org/0000-0003-2319-4103
https://orcid.org/0000-0002-6620-1898
https://orcid.org/0000-0001-8753-3878
http://orcid.org/0000-0001-5726-833X
mailto:fangl@hnu.edu.cn
mailto:zpcai@nudt.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22509&domain=pdf&date_stamp=2021-06-03


reliability of edge storage, we propose a cluster‐based
block distribution algorithm for SmartStore's in-

telligent edge recommendation process. SmartStore

ensures the reliability of edge storage while maximiz-

ing the benefits and resource utilization of both parties.

Finally, we conduct specific experiments on the pro-

posed auction smart contract through “Ethereum” and
the experimental results of implementation show the

effectiveness and efficiency of our SmartStore.

KEYWORD S

blockchain, edge storage, game theory, IoT devices, sealed
auction

1 | INTRODUCTION

With the continuous development of the Internet of Things (IoT), the amount of data generated
by varied kinds of sensors are increasing dramatically. According to Cisco's estimates, the
amount of data generated by IoT, such as humans and machines, will be close to 850 ZB by
2021.1 Traditional cloud storage cannot meet the data storage requirements of low latency, high
access, and fast backup. Edge computing2 has emerged as a new computing paradigm for data
computing and storage. With edge computing solutions, computing power and data storage can
be transferred from clouds to edges. Edge devices can be close to terminal devices geo-
graphically3 to provide lower‐latency computing and data access services.

Edge storage solutions, with the development of edge computing, have attracted widespread
attention. Researchers have proved that portable or mobile devices, such as cameras or handheld
tablets, with SD cards or other storage devices, can work as edge storage and send locally
processed information to the cloud.* Due to the limitation of network bandwidth and storage
capability, it is impossible to back up all the data of the smart cameras deployed at home or
surveillance cameras in the community to the cloud. In the field of smart transportation
(e.g., floating car sensors, videos, GPS information), Qiao et al.4 use edge servers to store data, and
adjust the distribution of data according to the state of the edge server through reinforcement
learning‐based intelligent scheduling, providing a new storage solution for intelligent transpor-
tation systems (ITS).

However, while edge storage brings convenience for data storage and access, it also brings
some new problems. Storing data at the edge (e.g., SD cards, edge servers deployed by the third
party) could be a security risk when facing attacks like network disconnection, power failure or
equipment disruption. Without a well‐established backup mechanism, data may be at risk of
loss when abnormal cases happen to the edge. Some researchers recommend using erasure
code5 to perform redundant data backups on multiple edges to ensure reliable storage of data.3,6

However, they did not take into account the heterogeneity of edge devices and the require-
ments of storage reliability. Edges with different storage resources, such as bandwidth, access
speed, and different storage spaces, can provide users with different quality of service. There
has been limited work on distributed data storage on edges and fog resources,7‐10 and most of
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those previous works are based on centralized resource allocation schemes, these schemes
hindered the optimization of system performance and scalability. Besides, instead of improving
the data storage reliability, most of these works focus on saving bandwidth or enhancing the
speed of response. It is particularly important to provide a flexible and extensible backup
scheme for edge storage data. It should fully utilize the edge heterogeneous resources to
maximize the profit of multiple parties and the reliability of storage.

However, designing such a mechanism will face some challenges:

(1) How to maximize revenue? In edge storage, how to correctly and reasonably price storage
resources so and maximize the revenue is an important issue. The edges tend to
price storage space as high as possible to obtain greater revenue. But, overpriced storage
space may not be accepted by the data owners (DO). Therefore, how to make reasonable
pricing in the system to maximize the revenue of the edges and achieve the purpose of
encouraging consumers to use their storage space is a fundamental problem.

(2) Who does the resource allocation? When consumers request storage service, edges need to
report their price and some attributes to a third‐party platform, and a group of edges can be
allocated to consumers through a reasonable algorithm. Choosing which platform to run the
allocation algorithm is a tough problem. The client ends may not willing to provide their
computing resources. If running on a third‐party platform, it may have a single‐point bottleneck
problem. And the credibility issues such as conspiracy or unreasonably allocate storage
requirements.

(3) How the data are distributed? The storage system needs to ensure the reliability of data
storage. Simply considering the price factor may result in redundant data clustering in a
geographic area. When some abnormal conditions occur (e.g., regional power outages or
network disconnections, malicious persons damaging the storage SD cards of camera
equipment), data aggregation in the same areas may lead to data loss. How to secure the
reliability of storage based on realizing the benefit of both parties is also a key challenge.

To address these challenges, we designed a blockchain‐based resource auction mechanism in
the distributed edge storage scenario. The proposed auction mechanism considers not only
price but also nonprice attributes such as bandwidths and locations when determining edges.
Using the smart contract of the blockchain as a trusted third‐party platform can build a more
reasonable and credible match between DO and Edges. Besides, we use an auction game theory
based on Bayesian Nash equilibrium to analyze how to maximize the profit of two parties.
Then, we implement the auction mechanism on the platform of Ethereum and verify the
feasibility of auction games through simulation experiments. Our mechanism not only provides
the price‐based auction mechanism that considered both edge resources and reliability but also
includes a blockchain to further enhance the system reliability. To the best of our knowledge,
this is the first work that meets all the above requirements. Compared with some existing
studies, the advantages of our work are shown in Table 1.

In summary, the main contributions of this paper are as follows:

• We propose to use Bayesian Nash equilibrium, a game theory concept that has been widely
applied in the field of economy, to analyze how edges and clients price the storage resources
to maximize their revenue. By comprehensively weigh the benefits of buyers (DO) and sellers
(Edges), SmartStore can achieve reasonable pricing.
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• We propose to apply smart contract as a trusted third‐party platform to guarantee the
credibility of multiple parties and implement a sealed auction mechanism that considers
multiple attributes through a two‐stage submission mechanism.

• We propose a cluster‐based block distribution algorithm. It is not only a discrete blocks
distribution algorithm but also a storage solution recommendation mechanism with multi-
attribute priority and storage reliability for users.

• Our sealed auction implementation on the Ethereum platform verifies the feasibility and
experimental evaluation shows the efficiency and flexibility of our SmartStore.

1.1 | Orgnization

We organized the rest of the paper as follows. Section 2 summarizes the related work. In
Section 3, we briefly describe the system model. Section 4 analyzes the auction mechanism and
the detail of our auction mechanism. Section 5 introduces our cluster‐based selection algo-
rithm. Secction 6 describes our specific application implementation and the performance.
We conclude this article in Section 7.

2 | RELATED WORK

There are limited works on distributed data storage on edge and fog resources, as reviewed and
classified in Moyasiadis et al.13 We describe the decentralized storage solution from the per-
spectives of fog/edge computing.7,9,11,3,14 FogStore7 proposes a distributed key‐value store on
fog resources with replication and differential consistency. vStore9 supports context‐aware
placement of data on fog and cloud resources, with mobile devices generating and consuming
these data. It uses a rules engine to place and locate data based on its context metadata but
ignores reliability as edge devices do not store data. He et al.11 propose a data security storage
model to improve the security of the storage in fog computing. Xia et al.3 make the first attempt
to formulate this Edge Data Distribution (EDD) problem as a constrained optimization problem
from the app vendor's perspective to realize APP high‐speed data access.

Aimed to achieve fair resource allocation, we use an auction mechanism to realize resource
allocation and auction. This is a popular way to provide fair resource allocation between buyers and

TABLE 1 Comparison of related studies

Studies Decentralized Fairness Reliable Scalable Traceable Price Attribute

vStore9 High Low Low Middle – – –

He et al.11 Middle Low High Middle – – –

Linaje et al.12 Low High Middle High – Involved –

Xia et al.3 High Low Middle Middle – Involved Involved

Qiao et al.4 High Low Middle Middle – – Involved

Our method High High High High Yes Involved Involved

Note: “–” means that it is not involved or discussed in the paper. Decentralized, Fairness, Reliable, and Scalable are features of
the edge storage system. Traceable indicates whether the resource allocation can be traced. Price and Attribute refer to whether
price and resource attributes are considered in resource allocation.
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sellers in the case of competition.15 In the study,16 the authors proposed a truthful auction me-
chanism in mobile cloud computing to achieve resource allocation between mobile devices and
cloudlets. Kiani et al.17 introduced a hierarchical mobile edge computing which contains different
types of cloudlets and proposed a resource allocation mechanism with a two‐time scale. Sun et al.18

considered the industrial Internet of things scenario in which the edge node is a resource‐rich data
center and extended the above truthful auction mechanism. Bahreini et al.19 solved the resource
auction problem at the edge/cloud levels. However, it cannot meet the property of truthfulness.
Peng et al.20 proposed the multiattribute‐based auction toward resource allocation in vehicular fog
computing. However, the above works either only consider the price factor of storage nodes when
determining the winners or ignoring some factors like location, bandwidth, or consumer choice. In
particular, none of the above methods are suitable for solving storage reliability problems in storage
scenarios. Besides, some of these works cannot assure trustfulness, which is a problem solved by
using blockchain technology in our research.

Besides, to maximize the profits of buyers and sellers, we use game theory21 to analyze
pricing strategies from an economic perspective. Li et al.22 applied the incomplete informa-
tion game theory and proposed a multiwinners grid resource allocation model, which max-
imized social welfare and improved resource utilization. Pillai et al.23 proposed a resource
allocation mechanism for machines on the cloud. Guo et al.24 modeled the bandwidth sharing
problem as a Nash bargaining game, and proposed the allocation principles by defining a
tunable base bandwidth for each virtual machine. In the research,25 a game‐theoretic
framework is proposed for resource allocation but the framework only considered a market
model consisting of one infrastructure provider and multiple mobile virtual network opera-
tors. Li et al.26 introduced Bayesian Nash Equilibrium to realize multi‐to‐multi resource
allocation based on resource attributes, which gave us a loT of inspiration. Some other
studies27,28 have proposed some resource allocation schemes based on game theory about
energy constraints. However, all the above studies have only studied the attributes of resource
allocation and cannot meet the requirements of simultaneously achieving storage reliability
in our edge storage scenarios.

In this paper, we utilize a blockchain‐based smart contract as a third party to realize the
auction mechanism. Blockchain is considered to be a suitable platform for implementing
incentive‐driven distributed storage systems. In recent years, a line of work has been
dedicated to the study of distributed storage systems for wireless networking applications
based on public blockchains. Also, blockchain technology has also been introduced to solve
problems such as data access control29 and log recording.30 In this article, blockchain can
also be used to record data distribution related logs for resource allocation records. In the
paper,31 a trading platform for device‐to‐device (D2D) computation offloading is proposed
using a dedicated cryptocurrency network. Therein, resource offloading is executed be-
tween neighbor D2D nodes through a blockchain‐based auction, and the block mining tasks
are offloaded to the cloudlets. In Henning's research,32 a Proof‐of‐Work‐based public
blockchain is adopted as the backbone of a P2P file storage market, where the privacy of
different parties in a transaction is enhanced by the techniques such as ring signatures and
one‐time payment addresses. When identity verification is required for market access
granting, for example, in the scenarios of autonomous network slice brokering33 and P2P
electricity trading,34 the public blockchains can be adapted into consortium blockchains by
introducing membership authorizing servers with little modification to the consensus
protocols and smart contract design.
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3 | SYSTEM MODEL

Figure 1 depicts the architecture of SmartStore mainly with five parts, the DO, Edge, Auction
Crowd, Auction Smart Contract, and Winner. the DO consists of diverse equipment (e.g., smart-
phones, tablet or personal PCs) with different storage requirements. Small and medium‐sized data
centers underutilized in enterprises/schools/hospitals and central telecommunication offices can
serve as edges to provide storage service and get paid. Also, in the field of video surveillance, an SD
card in a monitoring device can be used as an edge to provide storage space for other monitoring
devices. When the DO releases a series of requirements, the eligible edges can join Auction Crowd
for auction competition. They report their resources and prices to the smart contract for target
resource indicators based on the details of the requirements released by the DO. The smart contract
selects edge's resources and prices according to the requirements reported by DO and the edges are
then selected in a second‐round based on the DO bias. DO clusters the locations of edges that have
passed the auction and then selects the appropriate edges in each cluster as the final winners.

Each DO may have a certain type of storage task and different requirements for different
resources. For example, users with lower latency requirements may be willing to pay a higher
price to choose faster edges. Assuming that each DO has the overall price for the target
resources. Correspondingly, the resources of each edge contain different attributes, such as
storage resource bandwidth, interrupted increment, and interrupted service online time. The
prices of different resources are varied.

When a DO submits its request in a publicly accessible blockchain, it will trigger the
generation of a smart contract for resource auction. The bidders meeting the requirements
participate in the auction. Please note that the blockchain is responsible for verifying the
availability of service. The edge will be punished if they cannot deliver the promised service.
Various service auditing or data auditing methods can ensure that the service provided by edge

FIGURE 1 System overview of auction model based on smart contracts [Color figure can be viewed at
wileyonlinelibrary.com]
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works correctly. After each edge makes a reasonable price, a group of edges whose prices meet
the requirements is initially screened out by the smart contract. The price of the edges and the
price submitted by DO constitute a Bayesian game. The rationality of the auction and the
solution to maximize the benefit is given in the paper.

After the DO obtains edges whose prices and resources satisfy the requirements suggested
by the smart contract, edges are clustered using a geography‐based clustering algorithm, and
the number of clusters is equal to the number of blocks. Edges in each cluster are closest to the
cluster centroid, which ensures that each edge selected is relatively independent with others
selected from other clusters. In each cluster, an edge is selected according to a certain attribute
and price requirement as the final winners, which ensures that the data are as dispersed as
possible, and price or attribute requirements meet the requirements of DO. We outline the edge
selection process into the following steps:

(1) Initial. The client initiates the smart contract by submitting storage requirements. The
submitted content includes a list of requirements for each resource R R R= ( , …, )t1 , where t is
the number of resources. The highest cost Ptotal required for storage is used to pay the edges
that successfully bids. Besides, the smart contract also needs to include the two‐stage sub-
mission time interval requirements, T1 and T2. Each edge needs to submit commitment c
within the time of T1 and the prices P, the secret random number s within the time of T2.

(2) Bidding. Each edge and clients respectively price each resource P according to the pricing
standard in Bayesian Nash equilibrium theory. Through the secret random number s
generated by each node, combined with the pricing P, a commitment c is generated.
Commitment c needs to be submitted within time T1. All commitments submitted within
the specified time are registered in the blockchain distributed ledger to ensure that the
commitment cannot be modified.

(3) Revealing. Bidders and client submit the price P and secret random numbers s within the
T2 time interval as required, and the smart contract checks and calculates the commitment
value c′. The newly calculated commitment value c′ is compared with the value c sub-
mitted by each node in the first stage to determine the validity of the submitted price. The
valid price is stored in the smart blockchain.

(4) Reselecting. The client obtains the list of winning edges from the auction mechanism,
including location information and related attributes. Based on the attributes and location
information of the edges, clustering‐based methods are used to select the final winning
edges, taking into account the requirements of clients and the storage reliability.

In the Initial phase, Edges and DO give reasonable prices for resources. Section 4.1 analyzes the
price strategy, which guarantees that both DO and Edges can get the maximum benefit,
through Bayesian game theory and gives a detailed description of the “bidding” and “revealing”
process in Section 4.2. After the smart contract selects the edges, we use the clustering‐based
algorithm introduced in Section 5 to select the final edges that take into account DOs'
requirements and storage reliability.

4 | SMART CONTRACT ‐BASED AUCTION MECHANISM

In this section, we introduce the key technologies involved in the smart contract‐based auction
mechanism.
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4.1 | Game theory based price strategy

In this section, we analyze the issue of resource prices from the economic perspective.
Specifically, we target at determine a price that can maximize the interests of both parties.
That is, how to set the price of the resource seller (marginal price) to make the price more
acceptable to the resource demander (DO). We use Bayesian games to analyze this
problem.

In our scenario, there are two main parties involved in the auction: resource sellers (Edges)
and resource buyers (Clients of DO). For edges, they hope to sell as high as possible and selling
their own resources as much as possible. The client hopes to buy the resources he/she needs at
the lowest possible price. For both parties, it is hoped to obtain the highest expected benefits
from the transaction according to their different resources. Besides, we assume that both parties
to the auction have an accepted price that is not known to other participants. Moreover,
all parties have a distribution function to measure resource prices. When the auction starts, all
parties will price the resources they need or they own and each party submits a sealed price set
of resources to the smart contract to form a static game.

We assumpt thatm edges provide storage resources for n clients (DO). Pmax and Pmin are the

highest and lowest unit prices of resources in the market, { }P p p p= , …, , …,max max max maxt k1
,

{ }P p p p= , …, , …,min min min mint k1
, ≤j k0 < , k is the type of resource. Besides, we assume that

each node knows its own linear valuation function of resources. Then, We model the auction
price problem as a game Γ of incomplete infomation and the auction game is defined as follows:

Definition 1. Game Γ: It is a ⊕m n( )‐players game represented as a triple ( , Σ, Π).

•  means the set ofm edges (sellers) and n clients (buyers), including the resources set
that they own or require,   ∩= ,  and  are defined as follows:
∘  ∈c c c n n= { , , …, } ( > 1, )n1 2

+ is the set of clients (buyers). Ri
C is the resources

needed by client i, R r r r= { , …, , …, }i
C

i
c

it
c

ik
c

1 .
∘  ∈e e e m m= { , , …, }( > 1, )m1 2

+ is the set of m edges (sellers) and
R r r r= { , …, , …, }j
E

j
E

jt
E

jk
E

1 represents the resource set that edge ej provides to the system.

• ∩Σ = Σ Σ1 2 is the auction price strategy of all participates. We denote Σ1 as the expected
price strategy of clients and Σ2 as the auction price strategy of edges.
∘ In Σ1, the client i's valuations for the k kinds of resources,

PV pv pv pv= { , …, , …, }i
C

i
c

it
c

ik
c

1 . pvit
c is independent and identically distributed on

[ ]p p,min maxt t
. For each resource in Ri

C, the price set that the client can accept

is P p p p= { , …, , …, }i
C

i
c

it
c

ik
c

1 .

∘ in Σ2, the edge j's valuations for the k kinds of resources,

PV pv pv pv= { , …, , …, }j
E

j
E

jt
E

jk
E

1 . pvjt
E is independent and identically distributed on

[ ]p p,min maxt t
. For each resource in Rj

E, the price that the edge j's bid price set

is P p p p= { , …, , …, }j
E

j
E

jt
E

jk
E

1 .
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• ∩Π = Π Π1 2 is the set of payoff functions of two parties. where → ProfitΠ: Σ is the
payoff function under a certain strategy.

The quantity set of the resources when edges j and client i reach a deal is Q =

q q q{ , …, , …, }t k1 , ≤t k0 < . From the Definition 1, we get the total bid price of edge j for the

resource set Rj
E is∑ q p

t

k
t jt

E
=1 and the highest acceptable price for client i is∑ q p

t

k
t it

c
=1 . Besides,

the client i evaluates the tth resource as pvit
c, and the price submitted to the smart contract is pit

c,

obviously, the client only benefits when p pv<it
c

it
c is satisfied; Similarly, the edge j evaluates the

tth resource as pvit
E and the auction price is pit

E, p pv>it
E

it
E. All participants only know their own

valuations, do not know the valuations of others, but everyone knows the valuation is uni-
formly distributed on p p[ , ]min max .

Definition 2. Price strategy: Assume the pricing strategies of both parties are linear
functions of their own valuations. That is, using linear pricing strategies:

p a b pv b= + , > 0it
C

it
C

it
C

it
C

it
C (1)

p a b pv b= + , > 0jt
E

jt
E

jt
E

jt
E

it
E (2)

In Equations (1) The acceptable price strategy for any client i is a functions

p p p{ , …, , …, }i
C

it
C

ik
C

1 that specify the ask price of the client under each possible valuation.

Similarly, the bidding strategy for any edge j is a collection of functions p p p{ , …, , …, }j
E

jt
E

jk
E

1 that

specify the bid price under different valuation scenarios.

Definition 3. Profits: If the client i and the edge j reach a deal, the total price will be:

∑D
P P

Q
p p

q=
+

2
=

+

2
,ij

i
C

j
E

t

k
it
c

jt
E

t

=1

(3)

and the profits for the client i and the edge j are respectively:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑( )P pv

p p
qΠ : −

+

2
,i

C

t

k

it
c it

c
jt
E

t
1

=1

(4)

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑( )P

p p
pv qΠ :

+

2
− .j

E

t

k
it
c

jt
E

jt
c

t
2

=1

(5)

Besides, we denote PΠ ( )i
C1
− as the profits of all client participates without the client i's profit,

PΠ ( )j
E2
− as the profits of all edge participates without the edge j's profit. Therefore, P PΠ( , )i

C
i
C
−

or P PΠ( , )j
E

j
E
− is the profits of all participates.
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Definition 4. Nash equilibrium: A price strategy profile ∩Σ = Σ* Σ*=1 2

P P P P{ *, …, *, *, …, *}C
n
C E

m
E

1 1 is the Nash equilibrium of game Γ if no clients or edges can

further increase its profits by unilaterally changing its strategy at equilibrium.
Mathematically,

≥ ≤ ≤( ) ( )P P P P i nΠ *, * Π , * , 1 ,i
C

i
C

i
C

i
C

− − (6)

≥ ≤ ≤( ) ( )P P P P j mΠ *, * Π , * , 1 .j
E

j
E

j
E

j
E

− − (7)

If the game state reaches the Nash equilibrium, for the acceptable price of any client i and
the bidding price of any edge j, no other higher prices can achieve higher benefits. This is a
game of incomplete information. Through Harsanyi transformation,35 the game under the
condition of incomplete information can be converted into a complete but imperfect in-
formation game. We introduce a virtual participant “Nature,” which gives the corresponding of
the valuations pvit

C and pvjt
E.

Theorem 1. If the game state reach the Bayesian Nash equilibrium, the each acceptable
resource price Pi

C of any client i and the each bidding resource price Pj
E of any edge j should

satisfy the following conditions:

⎪ ⎪
⎪ ⎪

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

∗ ∗

( ) ( )

max pv
p Exp

Prob max
p Exp

pv Prob

s t max P max P

(a) −
+

2
, (b)

+

2
− ,

. . Π and Π

p
it
C it

C E
C

p

jt
E C

jt
E E

i
C

j
E

it

C

jt

E

(8)

where pvit
C and pvjt

E within the interval [ ]p p,min maxt t
. ≥Prob p p p v= { ( )}C

it
C

jt
E

jt
E ,

∣ ≥Exp E p pv p p pv= [ ( ) ( )]E
jt
E

jt
E

it
C

jt
E

jt
E , ≥Prob p p pv p= { ( ) )}E

it
C

it
C

jt
E , and Exp E p pv= [ ( )C

it
C

it
C

∣ ≥p pv p( ) ]it
C

it
C

jt
E .

In Equation (8), the first item in the curly braces is the actual transaction price of the tth
resource when the ith client and the jth edge reach a deal; ExpE is the expected value of the jth
edge's bid price when the transaction is successful; And ProbE is the probability that a trans-
action will succeed when the jth edge is bidding pjt

E.
In Equation (8), the second item in the curly braces is the actual transaction price of the tth

resource when the ith client and the jth edge reach a deal; ExpC is the expected value of the ith
client ask price when reaching a deal; And ProbC is the probability that a transaction will
succeed when the ith client is asking pit

C.
We reference the similar proof work in the literature26 to resolve the problem of how to

price the storage resources to achieve Nash equilibrium.

Proof. Considering that pvit
C and pvjt

E in the above assumptions are uniformly
distributed on [ ]p p,min maxt t

, the probabilities and mathematical expectations for
Equations (8) and (8) can be calculated as follows:
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⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

≥ ≥ ≥{ } { }( ) ( )

( )

Prob p p pv p p a b pv p p pv
p a

b

p

p p

p b a p

b p p

= = + =
−

=
−

−
=

+ −

−

E
it
C

it
C

jt
E

it
C

it
C

it
C

jt
E

it
C jt

E
it
C

it
C

max

p a

b

max min

max it
C

it
C

jt
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Similarly,
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Besides,
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Similarly,
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Then, we can get the following translations:
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Considering that the general way to find the optimal solution is to make the first‐order
partial derivative of equation equal to 0, and then verifying that the second‐order partial
derivative of the equation is less than 0, the optimal solution of the equation can be
obtained. Therefore, we first let the first‐order partial derivative of Equations (13) and
(14) equal to 0, respectively:
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Besides,
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□

It can be seen that when clients and edges set prices of resources according to Equation (17).
Then, the game state can gain equilibrium. The pricing strategies for all participants are
functions of their respective valuations, the highest and lowest market prices.

4.2 | Two‐stage submission auction

Since the transaction is transparent in the public blockchain, how to realize a sealed
auction using a smart contract is a challenge. To ensure normal payment to the auction
winner, DO should transfer the highest price they can accept and some requirements (the
number of blocks, bandwidth, throughput, etc.) to the smart contract during the bidding
stage. Besides, the price stored in the blockchain may also be read by other bidders. This
will cause bidders to change their bids accordingly instead of bidding truthfully, which
will result in loss of profits for the seller and loss of fairness in the auction. For example,
suppose that for a user with storage requirements, the maximum acceptable file storage
value is $2, once the bidder knows that the minimum required price is $2, the bid is
reduced to $1.99 to win the auction, and for the bidder who bid first will bid $1.99, and the
bidder who bid later can bid $1.98 to win the bid. Therefore, it is necessary and
challenging to realize a sealed auction through blockchain.

To achieve a sealed auction and solve the fairness problem, we propose a two‐stage
submission mechanism to realize the “bidding‐revealing” process, as shown in Figure 2.
The proposal requires that the commitment be submitted first in the stage of “bidding,”
and all bidders will uniformly reveal the price corresponding to the commitment after all
commitments are submitted. Edge's conditions (bandwidth, throughput, etc.) submitted by
each bidder do not need to be sealed, and these conditions can be detected by the system. If
a bidder reports false‐positive information, it will be punished. Submit the commitment
first to protect the quotation and prevent bidders from modifying their quotations by
reading the prices of other bidders. We use the Keccak‐256 hash function36 to realize the
conversion from price to promise.

In the first stage of the bidding process, to ensure the fairness of the auction of each node,
both the edges and the clients need to submit a commitment c. Commitment c at the second
submit stage can reveal the auction price of storage services and the acceptable price of the
client. We assume that the resource price is P p p p= ( , …, , …, )i n1 , and pi represents the price of
different types of resources, such as bandwidth, throughput, and so on. Each node first needs to
submit its own commitment c to the smart contract based on its auction price. Commitment c is
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generated by each node according to the price P and a secret random number s, by calculating
the commitment c Comment P s= ( , ). Each node has a random number s, so the commitments
submitted by each node are not the same. If a collision is promised during the submission stage,
then the submitted node will regenerate the secret random number s and recalculate c for
submission. Using commitment, each node submits promises within a certain period to ensure
that the price will not change. The node that does not submit a promise is deemed to have given
up the current round of auction.

Once the bidding time is over or all nodes have submitted their commitment.
The commitment c is registered in the blockchain, and the nontamperable property of the
blockchain ensures that the commitment cannot be modified. Next, the bidder sends the
auction price P and secret random number s to the smart contract in the revealing stage.
After all nodes submit the price and secret random number or the submit time is over, the
smart contract calculates c according to the secret random number s and the action price P
through the Commit function. We denote the commitment calculate by smart contract is c′,
c Commit P s′ = ( , ). If c′ is equal to c, it means that the bidder has complied with the bidding
rules and submitted the quotation at the time of promise honestly, then the bid price will
be registered in the blockchain. c c′! = means the bidder modifies the price during the
price submission stage, and the bid is invalid.

FIGURE 2 The two‐stage submission mechanism
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5 | CLUSTER ‐BASED SELECTION ALGORITHM

In some studies of computing resource allocation, most of the goals pursued are maximization
of benefits. However, in storage scenarios, the reliability of file storage is an indicator that
cannot be ignored. In the edge computing scenario, data are distributed to edge servers after
splitting into blocks. The scattered and redundant storage of blocks can ensure that the data can
always be recovered after one or more blocks are lost. However, when we seek to maximize
revenue through the auction, we ignore the issue of data storage reliability. Therefore, we
propose to use a cluster‐based selection algorithm to further filter edges, achieving the two
goals of maximizing revenue and high file reliability.

5.1 | Analysis of block distribution problems

The files stored are fragmented to many blocks to be stored in different edges. Some edges may be
owned by the same organization or communities that have the same public power supply settings,
access gateway equipment, and the same external threats. Suppose that the blocks of a file are
gathering in a concentrated area, and the above‐mentioned accidents, such as power outages,
network disconnections, and attackers’ vandalism have occurred in this geographic area. This will
directly cause the blocks in this geographic area to be offline at the same time, and the data will be
lost. Besides, although it is likely to be true that not all the aggregated edges belong to the same
organization, geographical clustering can also cause these edges to face the same threat. For
example, the memory cards on video surveillance equipment gathered in a certain geographic area
may store the data of this node or other nodes in the edge storage system. When some nodes in this
geographic area are maliciously damaged, it may cause data loss. Therefore, by distributing blocks
in different geographic locations of the storage system (specified ranges according to system re-
quirements or data transmission delay), ensuring that all blocks of a unified file are nongathering
and dispersed as much as possible can achieve higher file storage reliability.

We randomly generate data and use the form of Figure 3 to further illustrate the problem
we described above. The locations of all points in Figure 3 represents locations of edges in
storage services in different campuses, hospitals, and other organizations within a geographic
range. From the above figure, we can intuitively observe that the edges in the two circles are
very clustered. If too many data blocks of the same file are concentrated in the circled position,
and internal or external threats occur at this position, the file will face a greater risk of loss.

FIGURE 3 Example of location distribution
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5.2 | Cluster‐based block distribution mechanism

In response to the problems described above, this paper proposes a storage configuration
recommendation that uses a cluster‐based block distribution mechanism to achieve multi-
objective selection.

Supposed thatm Edges win the auction and the Client can obtain the price information and
location information of the winners e e e( , , …, )m1 2 . Then, the client performs central clustering
according to the location information of the edges. The number of clusters is the same
according to the number of blocks. For example, if there are k blocks, the number of clusters is
k. After clustering, all edges fall into k relatively independent spaces. The edges transmitted
from the k spaces constitute a combination to achieve as much price or resource demand as
possible based on considering reliability.

Since the total number of edges and the blocks are known, we choose to use KMeans central
clustering algorithm for the clustering process. The KMeans algorithm is the most commonly
used clustering algorithm. In our paper, the known set to be clustered is E e e e= { , , ..., }m1 2 , the
number of subspaces that need to be clustered is k, therefore, the problem of clustering is to
find k locations L l= { }i i

k
=1 to minimize the following cost function:

∑≔ ∣∣ ∣∣
∈

∈
cost E L e l( , ) min − .

e E
l L

i
2

i

Equivalently, the KMeans clustering problem can be considered as the problem of finding
the partition P p p p= { , , …, }k1 2 of E into k clusters that minimizes the following cost function:


∑ ∑≔ ∣∣ ∣∣

∈
∈

cost P p l( ) min − .
i

k

l
p P

i

=1

2

i
d2

KMeans clustering is used to find k clusters, and the set of all positions is equally
divided into k clusters. The k relatively independent clusters ensure that the sum of the
distances between each position point and the centroid is the smallest. The client can
select edges according to the attributes required by itself. For example, if bandwidth is
required first, then each cluster can be sorted according to the bandwidth, so as to select
the best edges in each cluster. However, if the resources in some clusters are consistent or
there are multiple consistent optimal, how to give an edge selection is a problem. If some
edges have been selected in some clusters, how to continue selecting from the remaining
clusters.

We make supplementary modifications to KMeans algorithm. After the clustering and
sorting by the attributes of one or more items in each clusters, some edges in clusters can be
selected, while there are multiple edges in some other clusters. At this point, we select edges
based on the principle of storage reliability. Supposed that the selected edges are
E e e e= { , , …, }t1 2 located in the cluster P p p p= { , , …, }t1 2 , the centroid set is CP cp cp= { , …, }t1 ,

the unselected cluster P p p pˆ = { , , …, }t t k+1 +2 , and the centroid set of unselected cluster is

CP cp cpˆ = { , …, }t k+1 . We continue to iterate the following process to select the optimal edges

in each of the remaining clusters.
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∀ ∈ ∣ ∣
∈ ∈
( )p P cp lˆ: max min − .

l p cp CP
i j

j i

By maximizing cost P( ˆ), we find the edges farthest from the selected set in the
remaining clusters one by one. Of course, this is not necessarily the optimal choice,
because the above selection method is related to the order of the remaining clusters. If we
want to find the optimal combination, we can constantly change the iterative sequence of
the remaining clusters. Considering that the iterative selection process is located on the
DO's side, the complexity cost is too high. Therefore, we only realize the selection by
randomly selecting the remaining clusters. In the following experiments, we will show
through a large number of experiments that the effect of the above‐mentioned max-
imization of cost P( ˆ) selection is far greater than the method of random selection in each
cluster.

The specific selection process is shown in Figure 4, the winners e e e( , , …, )m1 2 from smart
contract are clustered into k clusters cluster cluster( , …, )k1 . We assume that edges e12 and e j2

have been selected according to a certain attribute in cluster Cluster1 and Cluster2, and the
centroids of Cluster1 and Cluster2 are cp1 and cp2. Then, we can find the farthest edge e3? from

cp1 and cp2 in Cluster3 and find the farthest edge e4? from cp1, cp2, and cp3 in cluster Cluster4.

Continuously iterating the above process, we finally choose the edges e e e e e( , , , , …, )i k c12 2 3? 4? ?

that takes into account storage reliability. We give our pseudo‐code implementation in
Algorithm 1.

FIGURE 4 Clustering‐based selection mechanism [Color figure can be viewed at wileyonlinelibrary.com]
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Algorithm 1. Joint Attribute and Reliability Selection Algorithm

Input:

Blocks number k;

Resource number t ;

m edges: E e e= { , …, }m m1 ;

Location set of Em: {L L L, , …, m1 2 }, Li = {latitude longitude,i i}, ≤ ≤i m1 ;

Preferred resource of edges: a;

Output:

Set of selected edges: selectedSet ;

1: Random select k items from Sm as starting centroid C c c= { , …, }k k1 ;

2: Ck corresponds to k clusters: Cluster cluster cluster= { , …, }k k1 ;

3: while The cluster state has changed and the maximum iterations number has not been reached do

4: for each item ei in E e e= { , …, }m m1 do

5: Distance[] DisArr ;

6: Distance[][][] DisArrs;

7: for each item cj in Ck do

8: Distance d Dis e c Dis L L= ( , ) = ( , )j i j i j ;

9: ←DisArr dj;

10: ←DisArrs i j d[ ][ ] j;

11: end for

12: Shortest distance d minDis DisArr= ( )s ;

13: Corresponding cluster clusterde;

14: ←cluster ed ie ;

15: end for

16: for each clusteri in Clusterk do

17: Update centroid: ←c getCentroid cluster( )i i ;

18: end for

19: end while

20: Selected edges: ∅selectedSet = ;

21: The Clusters of selected edges set P;

22: The Clusters of remaining to be select: P̂;

23: # Select some preferred edges according to the attribute.

24: for each clusteri in Clusterk do

25: P P selectedSet getOptimal cluster a, ˆ, = ( , )i ;

26: end for

27: # Select edges from remaining cluseters P̂ .

28: each clusterj in P̂

29: Distance[] ∅DisArrTemp = ;

30: # Compute the distance between each edge and selectSet and get the shortest one.

31: for each ek in clusterj do

32: ←DisArrTemp minDis DisArrs selectedSet( , );

33: end for

34: ←selectedSet maxDis DisarrTemp( );

35: end for

36: Return selectedSet
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6 | PROTOTYPE IMPLEMENTATION AND EVALUATION

There are mainly two parts in the implementation and evaluation process: one is the smart
contract implementation and measurements on the consumption of interfaces; The other is the
analysis and experiment of the cluster‐based data distribution algorithm.

6.1 | Auction smart contract implementation and analysis

6.1.1 | Auction smart contract implementation

We implement an auction model based on smart contracts in Ethereum. Figure 5 shows the state
transition process in the smart contract. Three roles are mainly involved in the model: Client (C),
Service Node (SN), and Service Provider (P). We define the states in the smart contract: “Init,”
“Active,” “Bidding,” “Reveal,” and “Complete.” The interfaces used for the transition between
states in the figure belong to the content of the smart contract, “{Role}: {Interface Name}.” The
judgment box is used for selection when the contract conflicts. In Ethereum, a specific role can
access a specific breach to realize the interaction between the role and the contract.

In Ethereum, instead of running automatically, smart contracts can only be triggered and
executed through interfaces. The transition of a smart contract from one state to another needs
to be triggered by calling an interface function. Also, the implementation of interface functions
in smart contracts requires a certain fee to be paid to Ethereum. For example, to switch from
the “Bidding” state to the “Reveal” state, SN is required to submit the specific information of
the quotation, which is to trigger the state transition through the interface function “SN:
submitResouceDetail.” After the state transition is completed, the smart contract needs to pay a
certain amount of Ether to Ethereum.

6.1.2 | Consumption of each interface in auction smart contracts

We use Online Ethereum Studio# to develop Ethereum smart contracts. Online Ethereum
Studio supports automatic deployment of simulated contracts with multiuser establishment,

FIGURE 5 Auction task smart contract implementation
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and users can interact with contracts through the Web client. Users can also test the usage of
the interface in the contract, that is, the transaction fee and the cost of the Ethereum crypto-
currency “Ether.” To simulate actual application scenarios, we test all interfaces of the auction
model by deploying contracts on the Ethereum blockchain test network “Rinkeby.” Rinkeby is
a global blockchain test network for developers to debug smart contracts. It can simulate the
secret currency “Ether” in the real Ethereum blockchain, which is convenient for us to debug
the interface. We generate multiple accounts on “Rinkeby” to simulate different roles, and use
the “Ether” retrieved from each simulated account to execute the interface and prepay different
types of fees. The service information submitted by the client triggers the service party to
establish a smart contract and deploy the contract to the blockchain. The service node chooses
to join Crowd for bidding through the task details. Run all interfaces through different situa-
tions to realize functional testing and data collection of all interfaces.

Based on the economic game model of edges and clients, reasonable quotations for dif-
ferent resources are determined. The edges submit all quotations at once within a certain
period through a two‐stage submission strategy. The economic game model ensures that each
edge makes quotations from the perspective of the greatest benefit; the two‐stage submission
strategy ensures fairness and rationality in the auction process and prevents the edge from
arbitrarily changing prices or tampering with quotations through late submission. Therefore,
we mainly study and analyze some performance information from the deployment and ap-
plication of smart contracts. The complexity of the interface in the smart contract determines
the performance of the operation, and the complexity of the interface determines the cost of
state transition. In the Ethereum network, miners need to consume power to execute the
procedures defined in the interface for verification and state conversion. Therefore, the more
complex the interface, the higher the cost to pay. The “Gas” defined in Ethereum is used to
measure execution costs. Transaction cost is the product of the consumption of “Gas” and the
price per unit of “Gas.” Therefore, the “Gas” consumption in the test network is similar to the
consumption in the main network. Therefore, we recorded all the “Gas” consumption of each
interface from the transaction records of the experiment to reflect the performance of our
interface.

Figure 6 shows the amount of “Gas” in the main interface of the contract. The results show
that the supplier's interface consumes more gas. Since the supplier needs to issue a smart
contract and set some details in the contract, some of the interfaces run by the supplier also
include the processing of the submitted data, so the “Gas” consumption is larger. Besides, the
consumption of “Gas” mainly depends on the definition and implementation of the interface.
More optimized and reasonable interface design can further reduce the consumption of “Gas.”

6.2 | Cluster‐based block distribution algorithm analysis

6.2.1 | Algorithm complexity analysis

The complexity of the cluster‐based data distribution algorithm mainly consists of two parts,
one is the clustering process, and the other is the process of selecting nodes from each cluster.
Below we analyze the two processes and the overall complexity.

In the clustering process, the algorithm we choose is the KMeans clustering algorithm. The
time complexity of KMeans is ∗ ∗ ∗O l n k m( ), and the space complexity is ∗O n m( ). Among
them,m is the number of element fields, n is the amount of data, l is the number of iterations,
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and k is the number of clusters. At the same time, generally, l k m, , can be regarded as
constants, so the time and space complexity can be simplified as O n( ), that is, the synthesis of
the complexity of the KMeans algorithm is linear.

In the second process, the edges are selected from each cluster, mainly by performing a loop in
each cluster. After clustering, the number of clusters is fixed, so it is equivalent to traversing all the
data once. Therefore, the time complexity of the second process is also O n( ), which is also linear.

6.2.2 | Algorithm comparison analysis

In this section, we mainly compare the method of the random selection directly, random
selection in each cluster after each clustering, and our cluster‐based selection. We take the
longitude and latitude as (120, 30) as the center and randomly generate 50 positions within a
certain range. We set the block number as 7 and the cluster number is also 7. For random
selection, the number of clusters can be regarded as only 1. Then, we respectively calculate the
sum of the distances of the two positions and the minimum distance in each group as the
measurement standard. The greater the distance sum and the greater the minimum distance,
the better the file dispersion. The results are shown in Table 2. For each item, we tested
20 rounds and calculated the average value. It can be seen from the table that our clustering‐
based algorithm takes the distance between the selected edge and the unselected cluster as the
selection condition when selecting, and the selected result is better than the other two methods.

The distribution of the randomly generated data set is shown in Figure 3. The distribution
of red points is the distribution of selected edges when using different methods and the

FIGURE 6 The Gas consumption of each interface in auction task smart contract

TABLE 2 Results of reliability measures

Algorithm Cluster number Average distance Shortest distance

Direct random selection 1 7.7985 1.0309

Random selection in each cluster 7 8.6452 3.2717

Our cluster based method 7 10.0075 4.4857
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five‐pointed stars with different colors represent the centroid of each cluster in Figure 7. From
Figure 7, we can see the characteristics of edges distribution very intuitively. In Figure 7A, the
selected edges are clustered in a certain geographic area. As we marked with a red circle in the
figure, the attack on this area is likely to cause these edges to be dropped at the same time. For
the random selection after clustering, edges selected in each cluster may result in the selected
edges being located at the junction of two adjacent clusters, making an unwise choice, as shown
in Figure 7B where we use the red circles marking it out. In terms of location, two edges may be
dropped by the same abnormal event, which reduces the reliability of file storage. In contrast,
the edges selected using our cluster‐based method in Figure 7C can be well distributed in the
region. The results in Figure 7 and the results in Table 2 can be mutually confirmed.

6.2.3 | Reliability analysis

We assume that the different clusters have the same probabilities of being attacked due to
external forces, denoted as p. We represent a file as F and the file F are consisted of n blocks,
wherem blocks in n blocks are redundant blocks, n m> > 0. In extreme cases, if all or n blocks
are gathered in the same cluster. The probability of data loss is p. If all blocks are distributed in
different clusters, the blocks number of being damaged are ∗n p. If more than m blocks are
lost, the file F is lost and cannot be recovered. For a better explanation, we assume that a data
composed of four original data blocks and three redundant blocks, data will be lost only when
more than three blocks are lost. Besides, to simulate the distribution area of edges, we

FIGURE 7 The distribution of selected edges using different methods. (A) Random selection, (B) random
selection after clustering, and (C) Our cluster‐based selection method [Color figure can be viewed at
wileyonlinelibrary.com]
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randomly generate a series of edge locations and describe their locations as shown in
Figure 7B,C. These generated position points represent the winning points in the auction
process. The locations with different colors are clustered by KMeans. We can calculate the loss
probability of the file F by the following formula:


⋯

∈ ≤ ≤

P C p p C p p C p p

C p p m n i p

= (1 − ) + (1 − ) + + (1 − )
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The result is shown in Table 3. Obviously, C p pΣ (1 − )i m
n

n
i i n i

= +1
= keeps decreasing with

the increase of redundant data blocks and is much smaller than p. The probability of data
loss is much smaller than that if the blocks are stored in a gathering distribution. Therefore,
The decentralized distribution of blocks greatly improves the reliability of edge storage.
Besides, we show in Figure 8 the file loss probability under different conditions when the

TABLE 3 Probability of file loss under different aggregation situations

n m− n m Gathered Dispersed n m− n m Gathered Dispersed

3 4 1 0.1 0.0523 6 8 2 0.1 0.03809

3 5 2 0.1 0.00856 6 8 3 0.1 0.00833

4 5 1 0.1 0.08146 6 10 4 0.1 0.001635

4 6 2 0.1 0.01585 6 11 5 0.1 0.0002957

4 7 3 0.1 0.002728 7 8 1 0.1 0.186895

5 6 1 0.1 0.025692 7 8 2 0.1 0.07019

5 7 2 0.1 0.00502 7 10 3 0.1 0.012795

5 8 3 0.1 0.00089 7 11 4 0.1 0.00275

5 9 4 0.1 0.00089 7 12 5 0.1 0.0005412

6 7 1 0.1 0.14969 7 13 6 0.1 ∗9.9285 10−5

Note: We set probabilities of each cluster being attacked, p = 0.1, n is the total blocks number,m is redundant blocks number
and n m− is the original blocks number.

FIGURE 8 Probability of file loss in different redundant data blocks [Color figure can be viewed at
wileyonlinelibrary.com]
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number of original blocks is 15. We can intuitively observe that when the redundant data
block is 1, the probability of file loss in dispersed storage is greater than the probability of
gathered storage. This is because the file is stored in 16 locations, and any loss of two blocks
can cause the loss of the file. With the increase of redundant data blocks, the probability of
file loss under decentralized storage continues to decrease until it is far less than that of
gathered storage. This phenomenon is confirmed by the two situations (6,1) and (7,1) in
Table 3. Choosing an appropriate redundancy ratio can greatly improve the reliability of file
storage.

6.2.4 | Time consumption

To test the time consumption of the cluster‐based selection algorithm, we conduct experiments
on the Windows PC with 64‐bit intel‐core i5‐8250U CPU at 1.8 GHz and 8 GB memory. Besides,
we test each result 15 times and average the experimental results.

As shown in Figure 9, we test the time consumption in different situations. First, we
take the number of edges from 50 to 2000 and set the number of clusters to 50 and 100,
respectively. We test time consumption to run each cluster‐based clustering algorithm. We
can get that as the number of edges increases, the time consumption also increases linearly
as the results shown in Figure 9A. Besides, setting the number of edges to 2000 and 3000,
respectively, we continued to test the time consumption of running the algorithm in the
range of the number of clusters from 50 to 450. Similarly, for the same number of edges, the
time consumption also increases as the number of clusters increases, and the results are
shown in Figure 9B.

Besides, in an actual system, the size of the data and the number of clusters can be
specifically selected for the performance of the terminal device. In the case of too much
data on the edges, some edges can also be selected in advance through some specific
attributes required. For example, prefer to select the edge with fast access speed or large
storage space.

FIGURE 9 Time consumption in different situations. (A) Time consumption when edges'number
increase and (B) time consumption when cluster's number increase [Color figure can be viewed at
wileyonlinelibrary.com]

CHEN ET AL. | 23

http://wileyonlinelibrary.com


7 | CONCLUSIONS

Through model construction and solution, mechanism design, implementation, and
evaluation, we provide an edge storage solution named SmartStore. The SmartStore uses
smart contracts to replace the traditional centralized data distribution platform. Besides, we
propose using the game theory to conduct price analysis from an economic perspective and
using a two‐stage submission strategy to ensure the fairness of the SmartStore. After all
edges and clients make reasonable prices, the edges that pass the auction are reselected
using improved clustering‐based clustering methods to determine the final selected edges.
SmartStore provides users with recommendations for storage solutions that take into
account maximum revenue and storage reliability. Furthermore, some content can be
further studied in the future. For example, the interfaces of the smart contract can be
further improved to increase the operating speed and reduce “Gas” consumption. In this
paper, the main idea is to provide solutions for edge storage that take into account the
prices of heterogeneous resources and storage reliability and leave users with more in-
dependent customization options.
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