IEEE INTERNET OF THINGS JOURNAL

Centipede: Leveraging the Distributed Camera
Crowd for Cooperative Video Data Storage

Jiaping Yu, Haiwen Chen, Kui Wu, Senior Member, IEEE, Tongqing Zhou, Zhiping Cai, Member, IEEE,
and Fang Liu

Abstract—Surveillance cameras have been extensively used
in smart cities and high security zones. However, with the
exploding deployment of smart cameras, the rapid growth
of cloud workloads from vision-based IoT applications are
becoming a huge burden for all cloud service providers. Some
researchers have proposed mechanisms such as compression
and de-duplication to reduce the video traffic size, but these
methods cannot offset the enormous growth of data volume.
Most of the surveillance video data do not need to be proceeded
in real-time. By making use of the IoT camera’s on-board
resources to store the data, the cloud workloads can be
fundamentally reduced. However, recent incidents have posed
a new, powerful geo-range attack, where the attacker may
compromise a group of surveillance cameras located within an
area. Existing simple on-board solutions cannot offer secure
defense against such geo-range attacks. To tackle the problem,
we develop Centipede, a cooperative video data storage system
that distributes video content across geographically dispersed
surveillance cameras. It generates secure copies for the video
content and enhances data security by judiciously distributing
erasure-coded video blocks across optimally-chosen surveil-
lance cameras. In this paper, we implement Centipede and
evaluate its performance. Centipede is the first solution that can
fundamentally reduce the cloud workload and defend against
geo-range attacks.

Index Terms—Distributed Storage, Surveillance Cameras,
Geo-Range Attacks

I. INTRODUCTION

Ith the continuous development of computer vision

and semiconductor technology, vision-based IoT ap-
plication has been widely adopted in the fields like smart
cities [1], Al enabled transportation, and automated work-
erless factories. For instance, DiDi, the largest ride-hailing
company in China, requires to install cameras in cars to
monitor the trip in real-time for the safety of drivers and
customers [2]. In fact, the public transportation systems in

Jiaping Yu, Haiwen Chen, Tongqing Zhou (corresponding author) and
Zhiping Cai (corresponding author) are with the College of Computer,
National University of Defense Technology, Changsha, Hunan, 410005,
China.

E-mails: {yujiaping19, chenhaiwen13, zhoutongging, zpcai } @nudt.edu.cn

Kui Wu is with Department of Computer Science, University of Victoria,
P.O.Box 3055, Station CSc, Victoria, British Columbia, Canada VW 3P6.
E-mail: wkui@uvic.ca

Fang Liu is with the School of Design, Hunan University, Changsha,
Hunan, CN 410005. E-mail: fangl@hnu.edu.cn

Jiaping Yu and Haiwen Chen contribute equally to the article.

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

many cities worldwide has deployed security cameras in
buses or MTR (Mass Transit Railway) [3].

The exploding deployment of smart cameras in different
kinds of IoT applications leads to tremendously increased
multimedia data over the Internet [4]. According to [5],
by 2022, Internet video will represent 82% of all business
Internet traffic, wherein Internet video surveillance traffic
will increase seven fold. Intuitively, uploading the real-time
captured video contents to a powerful cloud platform for
computation-intensive data analytic, processing and central-
ized data storage is a natural choice, thus is supported and
adopted by main IoT camera manufactures. As shown in
Fig. 1(a), under such settings, the cloud would collect video
segments from distributed cameras for archival purpose and
responses to the viewing requests of users. However, the
growing amount of standalone smart cameras will inevitably
add to the burden of the cloud and degrade the perceived
performance, significantly limiting the scalability of the
above centralized solution [6].

In fact, what the users actually expect is the effective
on-demand retrieval of the video data. Here, effectiveness
means that users could retrieve the surveillance data even
if the surveillance devices are under the security threats
like natural disaster or sabotage. As a representative, for
surveillance systems deployed in smart homes, owners usu-
ally launches a remote video viewing session when certain
motions or voices are detected [7]. To this end, transmitting
all the video data to the cloud in real-time is, in most cases,
not necessary. Considering the improved performance of IoT
cameras’ on-board hardware, it is promising to keep the
generated data at the local storage or private data centers.
Specifically, as shown in Fig. 1(b), an alternative, yet more
efficient, solution only uploads some key frames or messages
(e.g., movement detection in smart home) to the cloud, users
then send out request according to these tips and the cloud
helps to transfer the answers. Manufacturers like TPLink',
Lenovo? and Xiaomi® have already provided such simple on-
board solutions. In this way, IoT applications can manage to
serve a large amount of users to view their remote cameras.

Yet, we point out that keeping the complete video seg-
ments at their sources incurs threats on data confidentiality
and availability. The underlying problem lays in that IoT

Uhttps://www.kasasmart.com/us/products/security-cameras
Zhttps://manuals.plus/lenovo/lenovo-snowman-ip-camera-user-manual
3https://www.mi.com/us/mi-home-security-camera



IEEE INTERNET OF THINGS JOURNAL

H Q‘ ® % Segment 1
sm.
= t @ ——b[[]D

Segment 3
Q®@'

(a) Cloud-based Centralized Solution

@ fon
~ e
~ Stored Key Frames

~ =
@msmmusg‘ o= ‘. @
* - = r
Segment 2 ’Nﬁ‘iy Request
«
m—
‘L% Requested Data User
Q' @ [Oh (5) Requested Data T
Segment 3
(b) Simple On-board Solution
Fig. 1. (a) Cloud-based centralized solution. Devices upload all their

recorded videos to the cloud. When user request, cloud send the requested
data to the user. (b) Simple on-board solution. Devices upload the key
frames to the cloud only when movement or other security issues detected.
Users then send out request according to these tips and the cloud helps to
transfer the answer from the origin camera devices.

cameras can be easily compromised due to the weak physical
protection on-site, leading to single point offline and the on-
board data inaccessible, or even damaged. From recent news
reports, a bomb attack in Malibagh on May 26, 2019, which
kills a female assistant inspector and two others, damaged
all the nearby security cameras, making it impossible for the
police to find the terrorists from video recordings. In recent
non-peaceful protests in the US, it has been reported that the
protesters have smashed many on-street surveillance cameras
to avoid themselves to be visually captured. In this paper,
we denote such a type of attack as geo-range attacks, where
an adversary is capable of compromising (via physically
damaging or remote hacking) one or more cameras located
in certain physical areas. We believe that Geo-range attacks
pose a new challenge in developing secure on-board data
storage solution for surveillance and forensic needs.

To reconcile the tension between transmission efficiency
and data storage security, in this research, we propose to
develop a cooperative and distributed IoT video data storage
system, named Centipede, by exploiting the assistance from
one’s peer crowd. Briefly, Centipede keeps the data at local
storage to maintain scalability w.r.t increasing amount of
IoT devices and generates and stores the data replicates of
each device in its peer devices. Instead of storing complete
video data segments in one device, we split each segment
into blocks with erasure coding. Each block from the same
segment is stored in different peer devices. By using erasure
codes [8] and encryption techniques during data dispersing,
it is expected to protect data availability and confidentiality
when facing geo-range attack. We call our system Centipede
to emphasize its security since we can successfully recover
all video files even if a subset of cameras are compromised.
As an analogy, a centipede can walk even if losing several
legs.

In the system, we use the local storage of surveillance
cameras and a virtualized coordinator. All the surveillance
data are encoded and distributed to the local storage of

surveillance cameras. The coordinator is a virtual compo-
nent, which can be deployed on a cloud or edge server. It
stores the hash values and calculates the video distribution
schedules for surveillance cameras.

Nevertheless, it is technically difficult to build Centipede
to achieve desirable performance under practical constraints.
To defend against geo-range attacks, each device should
“push” their data to other backup devices as far as possible.
Such intentions incur the cost on transmission delay and
are limited by the storage capacities when scaling to large
amount of devices. Hence, in particular, we need to jointly
consider the constraints of local storage size and the network
delay and carefully select one’s backup devices during data
dispersing.

To address the above challenge, we utilize an attacker’s
physical constraint in a geo-range attack, i.e., the attacker
can only damage nearby cameras. This is reasonable in many
real-world attacks when an attacker can only launch physical
sabotage in a local area. We propose to find an evenly
distributed camera set, which implies a series of locations
that would not be attacked simultaneously, for each camera
and send the data replicates to them. We call this technique
geo-aware erasure coding.

Overall, we make the following contributions:

o We raise the awareness of geo-range attacks and de-
scribe a quantitative model for them. Having show
their influences and damage in real-world events, such
attacks threaten the data availability of IoT cameras.

o We design Centipede, a cooperative video data storage
system that could backup the surveillance data locally
instead of sending massive video uploading workloads
to the cloud. With geo-aware erasure coding, Centipede
can effectively distribute video content across geo-
graphically dispersed cameras to achieve data security
under resource and cost constraints.

o With the deployment of a prototype system as well as
simulation study, we systematically evaluate the perfor-
mance of Centipede w.r.t. availability in the presence of
various levels of geo-range attacks.

The rest of the paper is organized as follows. Section II
introduces the background and related work. Section III
presents the attack model and design goals. The system ar-
chitecture and the core algorithm in Centipede are introduced
in Section IV. We implement and evaluate Centipede in Sec-
tion V, Then we discussed the performance and limitation
in Section VI and conclude the paper in Section VIIL.

II. RELATED WORK

Researchers have conducted studies to reduce the exces-
sive workload from vision-based IoT devices to the cloud.
Some of them focus on optimizing the cloud transmission
strategy itself, while others are making efforts to analyze the
distributed data storage systems and looking forward to find
new solutions to reduce the traffic size.



IEEE INTERNET OF THINGS JOURNAL

A. Cloud Workflow Optimization

The optimization of video traffic size to the cloud has been
thoroughly studied in the past few years. Related studies
mainly consist of two aspects: one is the optimization of
video contents with compression and de-duplication, the
other is the optimization of the cloud architecture.

Compression and de-duplication are most common used
methods. Liu et al. [9] present an efficient video pre-
processing strategy for wireless surveillance systems using
light-weight AI and IoT collaboration. With their work, the
redundant data in the surveillance video can be reduced
during transmission. Hu et al. [10] propose Starfish, a design
that could better compress the video data with less data loss
in the process of data transmission to the cloud. In [11],
image processing framework proposed by Chamain et al. can
achieve adequate performance with limited channel band-
width to the cloud. In [12], Chen et al. proposed a layered
adaptive compression design for efficient data collection,
which could achieve better performance than conventional
clustered compression schemes. Aiming at better allocate the
cloud bandwidth, Auday et al. [13] presents the concept of
bandwidth slicing, which means distribute the limited cloud
bandwidth to all virtual machines on the cloud based on their
needs.

Another direction is to optimize cloud architecture, which
includes deploying edge servers to share the pressure of the
cloud or adopting multi-cloud architecture.

UniDrive [14] is an example multi-cloud storage system.
It uses multiple consumer cloud storage, and stores the coded
blocks to different cloud storage systems. UniDrive can en-
hance the performance of single cloud storage system, since
it uses multiple clouds to transfer files in parallel. By fol-
lowing a server-less, client-centric design and by distributing
the erasure file blocks to multiple cloud storage, this scheme
can effectively reduce the bandwith consumption for each
single cloud service provider. Cai et al. [15] propose a many-
objective intelligent algorithm for efficient task scheduling
in Internet of Things system based on multi cloud. JinLong
et al.[16] propose an efficient multi-cloud storage system
CoCloud based on web APIs. By deploying proxies that can
efficiently access the web APIs for deduplication operation,
CoCloud can achieve user-perceived performance for multi-
cloud collaboration.

These optimization strategies are based on the features
of cloud data transmission. Though to some extent, these
methods could reduce the pressure of the cloud, the workload
size can not be less than the information entropy. As for the
multi-cloud architecture, although the pressure on a single
cloud platform is reduced, without an additional compression
algorithm, the overall bandwidth consumption of all the
cloud storage platform in the network is still the same.

B. Distributed Data Storage and Analysis

To overcome the bottleneck of cloud data transmission,
some work leverages distributed architecture for data analy-
sis locally. Zeng et al. [17] propose Distream, a distributed

live video analytic system based on the smart camera-edge
cluster architecture. Instead of uploading the videos to the
cloud, Distream can analysis the video data on local edge
clusters. In [18], Hung et al. propose a video query opti-
mizer that can balance the resource demands and accuracy
of outputs for video analysis. In the field of healthcare,
Chen et al. [19] designed a distributed system that could
connect individuals, community clinics (or family doctors),
and hospitals to share the information.

Distributed storage is a solution to fundamentally reduce
the large cloud traffic of video data [20]. However, because
distributed storage system nodes are usually more fragile
than cloud storage, storage devices are not resilient to
physical attacks where an attacker can physically capture the
storage device. The adversaries may modify the data stored
in the local disk [19], or, to make matters worse, may steal
or disrupt the storage device, compromising the system’s
confidentiality, integrity, and availability.

In order to enhance the security of data in distributed
systems, researchers have designed a variety of encryption
algorithms. Fadiheh et al. [21] develop a new approach to
detecting the vulnerabilities of device hardware, but they
also point out that hardware defects are more than we
expected. According to [22], encryption products are not
free of vulnerabilities. This is true in particular when the
adversaries have physical access to the local storage and
can replicate the surveillance data for offline analysis.

However, in the face of attacks aimed at destroying the
system, encryption does not increase the probability of
data survival. So other researchers conducted a series of
studies on data recovery. With clustering [23] and erasure
coding [24], a high fault tolerance storage system can be
built with a distributed storage system. In [25], Li et al.
propose a unified and configurable framework for readily
deploying a variety of erasure coding solutions into existing
distributed storage systems. While Liang et al. [26] combine
the blockchain with a distributed data storage system and
proposed a secure data storage and recovery scheme in the
blockchain-based network.

In practice, large-scale attacks against video devices usu-
ally occur within a specific geographic location. Therefore,
no matter what recovery strategy is adopted in actual de-
ployment, it is necessary to ensure that the distance between
storage devices cannot be too large to ensure that as many
storage devices as possible survive the attack.

III. PRELIMINARIES

This section describes the research problem by formally
building a quantitative model of geo-range attacks. Then the
design goals are presented by jointly considering the security
concerns and data storage efficiency.

A. A Quantitative Model for Geo-range Attacks

We use a two dimensional grid to cover the whole
area under surveillance. The granularity of the grid is set
based on specific surveillance requirements. Without loss



IEEE INTERNET OF THINGS JOURNAL

of generality, we can assume that the dimension of grid
is W x H. We assume that the system may be subject to
single-point geo-range attack where the sabotaged devices
fall within one circular area, as well as multi-point geo-
range attack where the sabotaged devices fall within several
(overlapping) circular areas.

We call the center of the circular area a start point of geo-
range attack. Note that a multi-point geo-range attack may
have multiple start points. For example, a start point may
correspond to a bomb of terrorist attack. Since the granular-
ity of the grid corresponds to the surveillance requirements,
we only need to consider the circular area at the level of grid
cells. To be specific, assume that we use a W x H boolean
matrix B to denote the whole area. B, = 0 represents that
the grid cell (x,y) is not a start point, and B, = 1 means
that the grid cell (z,y) is a start point. Fig. 2 shows an
example of single-point geo-range attack and an example of
multi-point geo-range attack, respectively.

o []
° - -
(] L] L]
(a) Multi-point (b) Single-point
High Low High Low
Attack Strength: Probability of Ruin: -::‘
Start Point: . Safe Nodes: Affected Nodes: LA

Fig. 2. Example of single and multiple point geo-range attacks.

We need to assume some constraints on the geo-range
attack, because no defense is possible if the attack can
compromise all the surveillance devices. For this reason,
we assume that the adversaries can only choose a limited
number of start points. In practice, it is reasonable to assume
that a surveillance device might survive the geo-range attack
even if it falls within the attack range. For instance, an
adversary might not find and damage all the nearby cameras.
Therefore, we propose a probabilistic model, in which a
camera is more likely to be compromised if it is more closer
to a start point. We adopt a similar probabilistic model [27]
that considers the distance between the target and the sensor:

efad((m,n%(ixj))

if d((m,n),(i,5)) <r

if d((m,n),(i,5)) >r
(D

where p((m,n), (i,7)) is the probability that a surveillance
device in cell (m,n) is destructed by the geo-range attack
with start point (4,5), r is the range of the attack, o €
(0,1) is a parameter representing the strength of the attack (a
lower « value means a stronger attack), and d((m,n), (i, 7))

denotes the distance between the surveillance device and the
start point. In fact, the factor o plays a role of truncation
for the influence physical distance in a geo-range attack.
Namely, we usually have ﬁ < a> ﬁ with dax
(dymin) stands for the maximum (minimum) effective threat
range of a geo-range attack. Meanwhile, we highlight that in
a multi-point geo-range attack, if a surveillance device falls
within the circular areas of multiple start points as shown
in Fig. 2 (a), the probability that the device is destructed is

calculated as: 3

p=1-T]0-p).

i=1

(@)

where (1 —p;) is the probability that the device survives the
attack from ¢-th start point and k is the total number of start
points.

In our attack model, we assume that the attackers are not
powerful enough to break the coordinator. Nevertheless, the
attackers can launch geo-range attacks. In particular,

o The attackers may have physical access to the surveil-
lance cameras and their local storage. They are able to
destroy the surveillance devices and can read the data
stored in the local storage.

« The attackers, however, can only capture the surveil-
lance devices within a certain area.

The above assumptions are made based on our observa-
tions of real-world geo-range attacks: (i) surveillance devices
seem to be the only equipment that external adversaries (e.g.,
terrorists, non-peaceful protesters, or malicious users) can
make direct contact with; (ii) the sabotage is usually limited
within a relatively smaller area (e.g., a street rather than the
whole city); (iii) the coordinator can be deployed remotely
with high law enforcement such that physical contact for
the attackers is impossible and cyber attacks are extremely
difficult.

Under the above attack model, all the surveillance devices
could be untrustworthy. The adversaries with user privileges
may also try to read/erase all the evidence on local storage.
In the following, we present a quantitative model that not
only facilitates our analysis on geo-range attacks but also
can guide our design of video block distribution strategy.

B. Design Objectives

As stated above, our main goal is to develop a feasible
cooperative and distributed IoT video data storage system.
More specifically, we need to accomplish the following
objectives:

1) Geo-range attack resistance: As stated above, geo-
range attack is an existential threat to the surveillance
cameras. Once it happened, all the surveillance cameras
within a certain range will be influenced and the data on
them possibly damaged.

Goal 1: Centipede need special design against Geo-range
attack.

Geo-range attack may harm both the data availability and
confidentiality, thus, we have the following sub goals.



IEEE INTERNET OF THINGS JOURNAL

2) Availability: One of the most important reason users
upload their surveillance data to the cloud instead of ap-
plying simple on-board solution is the cloud could provide
better availability. Local storage of surveillance cameras is
not resistant to physical attacks, and once the storage devices
are damaged, it would be impossible to recover the data.

Goal 2: Centipede should provide better availability than
simple on-board solution.

3) Confidentiality: In geo-range attacks, the adversaries
can have physical access to the cameras. And thus it is likely
for them to capture the storage devices and read the data.
This becomes a huge threat to the data confidentiality.

Goal 3: Centipede should provide better confidentiality
than simple on-board solution.

IV. OUR CENTIPEDE SYSTEM

In this section, we introduce our Centipede system from
two aspects: system structure and two key algorithm. We
first present an overview of the structure and workflow of
Centipede, then introduce two key algorithm: Geo-aware
Erasure Coding and data encryption mechanism in detail.

A. System Overview

As introduced in section I, evidence have proved that
local storage of surveillance cameras may have security
risks when facing geo-range attacks. In this paper, we hope
Centipede could resist the damage of geo-range attacks.

Centipede uses distributed P2P storage with erasure cod-
ing. Erasure code (EC) is a technology of data protection
and recovery in which data segments are broken into smaller
blocks and are coded with redundant codes [28]. The key
property of erasure code is that k£ blocks of data are expanded
into n (n > k) blocks of encoded data, such that any subset
of k£ encoded blocks suffices to reconstruct the original data.
Such a code is named as (n, k) code and allows us to recover
from up to n — k losses in a group of n encoded blocks.
One example is Reed-Solomon code, whose details can be
found in [29]. We omit the encoding/decoding details since
they are out of the focus of the paper.

The detailed data stored in the coordinator and the
surveillance devices are shown in Fig. 3. The surveillance
cameras store the distributed data blocks and the hash table
of each block stored in them. The function and data in
coordinator consists of four parts: Data Sync Controller,
System Metadata, Device Metadata Table and the Data
Allocation Module. The Data Sync Controller controls the
sync lock to assure the data consistency. The System Meta-
data is calculated based on the received device metadata.
It consists of Distance Matrix and Transaction Rate Matrix
among all the devices, the corresponding table of block hash
and location, the block number in the system, and a sync
lock. The Device Metadata Table contains all the devices’
metadata, which includes the device ID, location, the storage
capacity, time stamp of last data distribution, the transaction
rate with other devices, and the list of distributed segments

with a list of correspondence blocks for each segment.
The Data Allocation Module calculates the data distribution
schedule based on the system and device metadata table.
The high-level workflow of Centipede consists of four
steps, as illustrated in Fig. 3. In the first step, the surveil-
lance devices send the metadata to the coordinator. Then
the coordinator stores the device metadata and generates
the latest system metadata based on the uploaded device
metadata. Then it calculates the data distribution schedule
based on the latest metadata (details in Section IV-B) and
sends the schedule to surveillance devices. At the last step,
the surveillance devices first split the video segment into
blocks and encode data with erasure code, then distribute the
encoded blocks to other peer devices following the schedule.
In this paper, we assume an underlying network that sup-
ports the communication between the cameras and the com-
munication between the cameras and the coordinator [30].
The robustness and security of this network can be supported
with existing techniques [31],[32],[33],[34]. In this paper, we
applied an encryption method inspired by [33]. According
to their works, this encryption mechanism can not only
ensure data security, but also facilitate data compression. In
addition, we assume the security of the coordinator.

B. Geo-aware Erasure Coding

To defend against geo-range attacks, the coordinator
needs to carefully calculate the data distribution schedule,
such that all the data can be recovered even if the geo-range
attack can compromise a group of surveillance devices in a
given area.

We consider a system with one coordinator and m surveil-
lance devices, denoted by a set N = {1,2,...,m}. The
coordinator can collect the devices’ meta information such
as the storage space, the transmission rate, and the size of
backup surveillance data. Based on the meta information,
the coordinator needs to calculate, for every source device,
the optimal destination devices that are used to store the
encoded data blocks of the source device.

The data distribution schedule is represented by an m xm
Boolean matrix X, as shown in Fig. 4, where .S; denotes
source device 7 and D; denotes the destination device j.
X;; = 1 means that surveillance device j stores one data
block of surveillance device i. For instance, in this example,
the three encoded data blocks of device 1 will be stored
at devices 3, 4, and 5, respectively. After receiving the
data distribution schedule from the coordinator, a destination
surveillance device can pull the data blocks from the source
devices instructed by the data distribution schedule.

Centipede needs to maximize the data security in the
presence of geo-range attacks. To be specific, it needs to
solve the following problem:

(Problem) Secure data backup: Assume the encoded k
data blocks of source device ¢ are stored at destination
devices 41 ..., 1, respectively. Denote the distance of two
destination device ¢; and i as d(i1,42). Secure data backup



IEEE INTERNET OF THINGS JOURNAL

| | (2 B System Metadata |
: | I Distance Matrix : =
| - . R

| | | Trans Rate Matrix | Deviee .'D & Location
| Data Sync | h - | Block Size
| Controller : I Block Hash/ Location Table 1 _D Storage Capacity Segment ID1
I 1 | Block Number | Time Stamp List of Blocks
| 1 Trans Rate Table(m) Segment ID2
| : : Sync Lock | Trans Rate ID1 List of Blocks
=i O - .
o (2 Trans Rate IDm Segment IDn

i Segment Count{n) 52 List of Blocks

Coordinator

Fig. 3. Workflow and information in the coordinator and surveillance devices: (1):surveillance devices send meta information to the Data Sync Controller.
(2):Data sync controller stores the system metadata and device metadata respectively. (3):the data allocation module calculates the data distribution schedule
and sends it back to surveillance devices. (4): surveillance devices encode local data and distribute the encoded blocks to other peer devices.

D, D, D; Dy Ds Dm
s, [:] [:] [:] (0,0,1,1,1,..7\
s, [:] [:] D 0,1,0,1,1, ...
S5 [:] [:] [:] 1,0,1,0,1, ...
S, (] ()-(] Xmxm=| 11010,
5 C] D D 1,1,1,0,0, ...
Se D [j C] 11,001, ...
Sm D D . C] \ 01101, .. )

Fi

g. 4. A data distribution schedule

in the context of geo-range attacks is to maximize d(i1, i2)
over all (i1,42) pairs.

We also need to consider the system constraints when
solving the secure data backup problem. In particular, we
consider the storage capacity and the network delay.

Storage constraint: We need to assure that the size of all
data blocks stored in a device does not exceed its storage
space. Denote the storage capacity of device j as C;, then
we have:

ZBZ X Xij < Cj, Vj € {1,27...7m},
i=1

3)

where B; represents the data block size from surveillance
device ¢ (in bits).

Network delay constraint: Transmission rate means the
amount of data that can be transmitted per unit time. We
use an m X m matrix R = [R;;] to record the transmission

rates, where R;; denotes the transmission rate from device ¢
to device j. We set the transmission delay constraint 7; for
device 7 as:

" B,

Ti:§ L x X 4
‘ Rijx j 4
Jj=0

The transmission delay constraints in the system can be
represented as:

Ty < Tynao Vi€ {1,2,...,m}, )

where T),4, is the longest delay the system could tolerate,
which is defined by the user.

Overall, the secure data backup problem can be formally
formulated as:

d(i1,i2),
S.t. X“‘l = 1,X“'2 =1,Vie {1,2,...,m},

(6a)
(6b)

max
X

> Bix Xi; <Cj, Vje{l,2,.,m}, (6c)
i=1

T; < Thnaz Vi€ {1,2,...,m}. (6d)

This is a typical p-dispersion problem, which has been
proved to be NP-complete [35]. Therefore, we tackle the
problem with heuristics. We utilize the special geometric
feature underlying the problem, i.e., the optimal solution
must be the one that for each individual node, it maximizes
the smallest distance between this node and its backup nodes
under the given constraints. This fact can be easily proved
by contradiction. This is because if the above condition is
not true, we can improve the solution with a higher value of
the objective function, and thus the solution cannot be the
optimal one. This property provides us with a good heuristic



IEEE INTERNET OF THINGS JOURNAL

to solve the problem. Due to the geometric feature we call
the algorithm Geo-aware Erasure Coding (GEC).

The main idea of GEC is as follows: for any given device,
we treat it as the starting point of an (imaginary) geo-
range attack of unknown radius, and the goal of GEC is to
distribute the encoded video blocks of this device to other
backup devices outside the radius of the geo-range attack
and push the radius as large as possible under the constraints
(3)~(5). The pseudo code of GEC is shown in Algorithm 1.

Algorithm 1 Geo-aware Erasure Coding
Input: current device G whose data need to distribute;
Output: a list of nodes PlacedNodes to store G’s data
blocks;
1: Initialize a new Node object C' Node as Chosen Node,
a new Level object C'Level as Chosen Level;

2: NPB=0; // NPB = # of placed blocks

3: Level = 0;

4: while NPB < BlockNum do

5: for all grid cells do

6: ProceedingQueue.push(G);

7: end for

8: while ! ProceedingQueue.empty() do

9: Count =ProcecedingQueue.size();

10: for i = 0 to Count do

11: temp=ProceedingQueue.front();

12: ProceedingQueue.pop();

13: if unsearched grid UG near temp exists
14: then

15: ProceedingQueue.push(UG);

16: if PNode in UG meets (3)~ (5) and
17: ((PNode.delay <CNode.delay and
18: C'Level == Level) or C'Level <Level)
19: then

20: CNode=PN ode;

21: C'Level=Level,

22: end if

23: end if

24: end for

25: Level++;

26: end while

27: PlacedN odes.add(C N ode);

28: NPB++;

29: end while
30: Return PlacedN odes;

Using GEC as the basic building block, we have different
ways to solve the problem. The difference lays in the
location selection order, namely the order of calling GEC,
of each device. Obviously, different orders can lead to
different node assignment results. As such, we propose three
strategies for determining the order:

o Distributed: This strategy uses a random permutation
to determine the order of devices that call GEC.

o Storage First: This strategy first ranks the devices
based on the size of storage space occupied by the data

blocks. Devices with larger file blocks will call GEC
first. Since the storage space of each device is limited,
this strategy tries to avoid the situation that the system
has no enough devices to host large data blocks.

o Density First: This strategy is based on the density
of surveillance devices in a certain area. To determine
the density, we use the clustering algorithm proposed
in [36]. Devices in the area with higher density will call
GEC first. Within each cluster, we follow the Density
First strategy, i.e., devices with larger file block sizes
will call GEC first.

No matter which strategy is used, for each block, GEC
needs to iterate over all cells, which requires O(W x H)
times. Hence the time complexity of GEC is O(nx W x H),
where n is the number of data blocks in a device. The time
complexity of solving the problem is thus O(mxnxW x H),
where m is the total number of devices.

C. The Encryption Process

The surveillance data need to be protected and secured
since it may contain privacy information. In Centipede, to as-
sure the security of the surveillance data during transmission,
we apply an encryption process before the data distribution.

The encryption scheme is inspired by [33]. To encrypt
the surveillance data, it requires a random one-time use two
dimensional key matrix. Since the surveillance data can also
be transformed into a matrix, the encryption process is to
multiply the data matrix with the key matrix. To do this, we
need to divide the surveillance data into v period, and the
length of each period is w. Then the surveillance data S is
transformed into an u X v matrix, and the key matrix K is
an v X uw matrix. The encrypted data can be represented as
matrix W, which is the result of S x K.

The theoretical foundation of this encryption process can
be found in [33]. To generate the key matrix, a stream
cipher need to be applied. Here, we use the RC4 as the
key generator. the pseudo code of key generation is shown
in algorithm 2:

Algorithm 2 Key Matrix Generation
Input: Seed of key generation and period length w;
Output: The key matrix K

1: foralli=1to u x u do
2 w; = RC4(Seed);

3: end for

4: for alli =1 to u do

5: for all j=1 to v do
6 Wij =W(i—1)xm+j>
7 end for

8: end for

9: K = QR(Wuxw);

10: return K

Wherein, QR represents the householder QR decompo-
sition.



IEEE INTERNET OF THINGS JOURNAL

V. EVALUATION

In this section, We build a test bed for Centipede deploy-
ment and evaluate its performance.

A. System Implementation

We build a test bed for Centipede deployment. The device
side is implemented with camera and Orange Pi One*, an
open-source single-board computer. Fig. 5(a) shows a sample
Orange Pi One used in our prototype, which has Allwinner
H3 with Quad-core Cortex-A7 CPU, 512 MB memory, 16
GB storage space, and a 10/100 Mbps Ethernet card. The
coordinator is implemented with a remote server. It is an gb
series server, which has Intel Xeon Platinum 8269CY CPU
and 8 GB RAM. All of the devices and the remote server
are connected to the Internet through a wired network.

We currently deployed more than 30 devices in Hunan
province, China and plan to deploy more than a hundred
devices in the future. Fig. 5(b) shows an example of de-
vice deployment scenario in Changsha city. Considering the
number of deployed devices, in this deployment scenario,
we choose RS(5,3) as our erasure code. It could generate
2 erasure blocks from 3 data blocks, so that the surveillance
data could be recovered unless more than 2 devices storing
the blocks are destroyed.

>®

- K
16GB Memory ©
7 Card

Ethernet

0=

(@ (b)

Fig. 5. (a) Sample orange Pi one used in our Centipede prototype. (b) Map
of deployed surveillance cameras.

With the device location, remaining storage space and
network delay, the coordinator can calculate the data block
distribution schedule for each device. Table I shows detailed
locations of the devices and the result of data block distri-
bution with the Density First strategy. For instance, the data
blocks of device A are distributed to devices D, H, J, M,
N, and device A stores 7 data blocks for others. From the
table, we can see that the data blocks of a local device are
distributed to distant devices. We can also see that several
devices, such as the devices E, F', G, H, are concentrated
in a small area, as shown on the map. All these devices
tend to distribute their data blocks to some common devices
(e.g., A, M, N), which puts a lot of pressure on the storage
capacity of these devices. This problem is due to the devices’
deployment locations. We have found the same phenomenon
when we use different strategies to run GEC.

“http://www.orangepi.org/orangepione/

To test the security of Centipede and the effectiveness
of GEC, we simulated the geo-range attack in this scenario
and compare the possibility of data loss among GEC and
two state-of-practice strategies:

K-means: This strategy first distribute the cameras into
n + 1 clusters through the K-means clustering algorithm,
then each device randomly choose one device in each cluster
( except the cluster itself in) as the data storage devices.

Random: This strategy randomly chooses n devices as
data storage devices.

We assume that the attacker starts a geo-range attack
roughly from the deployment center with different attack
strength (i.e., different « values in Eq. (1)). With each given
« value, we gradually expand the range of the attack until all
devices are covered. We consider an high threat attack shall
have an attack strength 1/e, otherwise, a local replicate is
sufficient to prevent data breach. Meanwhile, here we set the
radius of an effective attack area to be at least 20 unit and
at most 100 unit. According to the formulation in Equ. 1,
this can be attained by choosing the a value from 0.01 to
0.05. The experiment results are shown in Fig. 6.

TABLE I
DATA DISTRIBUTION RESULT FROM FIELD EXPERIMENTS

Device Coordinate D?.ta.BIO.Ck Number of Stored
Distribution Data Blocks
A (112.919E, 28.287N) (D, H, J, M, N) 7
B (113.017E, 28.141IN) (A, D, H, J, M) 6
C (112.941E, 28.213N) (A, E, J, M, N) 2
D (112.943E, 28.172N) (A, E, J, M, N) 7
E (113.024E, 28.214N) (A, D, J, M, N) 7
F (112.991E, 28.215N) (A, D, J, M, N) 1
G (112.981E, 28.200N) (A, J, K, M, N) 0
H (112.990E, 28.219N) (A, D, K, N, O) 7
1 (113.008E, 28.17IN) (B, D, F, K, O) 0
J (113.114E, 28.221N) (B, D, E, H, K) 7
K (112.949E, 28.242N) (B, E, H, L, O) 7
L (112.979E, 28.177N) (B, E, H, K, O) 4
M (112.981E, 28.203N) (B, E, K, L, O) 7
N (113.010E, 28.133N) (C,E, H, L, O) 7
(6] (112.979E, 28.182N) (B, C, H, K, L) 6

Fig. 6 shows the number of failed devices with the
growth of device numbers covered in the attack range. Note
that in this context, a failed device means the remaining
block generated by this device is not enough to recover
the data generated by it. From Fig. 6, when the attack
strength is relatively weak (o > 0.015), GEC guarantees
that all data can be recovered when there are 7 out of 15
devices are covered in the attack range. Even under the
strongest attack(a = 0.01), GEC can still recover all the
data when 6 devices are affected. While the K-Means and
random strategy both have data loss when only 4 devices
are covered. As the number of damaged devices continues
to increase, more data cannot be recovered. This is because,
in the real world deployment, a large portion of devices
are deployed in a close area (like the downtown and the
high security area). The data from those devices need to
“push” to other distant devices, but a device is limited



IEEE INTERNET OF THINGS JOURNAL

GEC
K-Means|
Random

—
w
T

L L mﬂmmmmmﬂ?ﬂm

234567 8 9101112131415
# Devices in Attack Range

Average Number of Data Lost Devices

Average Number of Data Lost Devices

(a) Attack Strength o = 0.05

(b) Attack Strength o = 0.03

P
S
z
— —
GEC < 15[ GEC
13+ K-Means S 13+ K-Means
Random s L Random
[ ,511 L
L 2 9l
s
[ E ;,
£
L = 3r
il E |
b nm (ol Rl TRILNR, i o mmenmlaTIARIT,
1234567 8 9101112131415 5 1234567 8 9101112131415
# Devices in Attack Range :} # Devices in Attack Range

(c) Attack Strength o = 0.025

GEC
K-Means|
Random

ol

GEC
K-Means
Random

w
T

—_
w
T

| ﬂmmﬂﬂmw

GEC
K-Means|
Random

9

;

sL

37 FI_HI_‘_H

1t naMnalARVIARVAARIARAR AN ASARAAAARAAN

w
T

- L

234567 89101112131415
# Devices in Attack Range

Average Number of Data Lost Devices

Average Number of Data Lost Devices

(d) Attack Strength o = 0.02

234567 89101112131415
# Devices in Attack Range

(e) Attack Strength o = 0.015

2345678 9101112131415
# Devices in Attack Range

Average Number of Data Lost Devices

(f) Attack Strength o = 0.01

Fig. 6. Comparison of GEC, K-Means and Random distribution strategy. Note that the attack strength value ov = 0.01 implies a strong attack (refer to

Eq. (1)).

with storage space. Intuitively, for any given deployment
and given attack strength, there should be a threshold on
the number of damaged devices, beyond which the system
reliability deteriorates quickly.

In Fig. 7, for GEC, we compare the average number of
failed devices (i.e., their data cannot be recovered) when
different schedule strategies, Distributed, Storage First, and
Density First, are used. Note that the exact meaning of these
schedule strategies is explained in Section IV-B. From Fig. 7,
we can see that the number of failed devices increases as
the attack range increases in all three strategies. When the
attack range is less than 35, the Density First strategy has
the best performance. When the attack range reaches 50, the
number of failed devices is nearly the same among the three
strategies.

B. Performance Evaluation of Data Retrieval

With the geo-aware erasure coding, Centipede could as-
sure the effective data retrieval even if one or more surveil-
lance devices are disabled. In this part, we further evaluate
the data retrieval performance in a Centipede system with 15
devices. We use a personal computer to represent the client
end. It has Intel Core i15-6200U CPU, with 8GM RAM and a
Dell Wireless 1820A 802.11ac wireless network adapter. We
first retrieve three pieces of data segments generated by three
different devices, then compare the retrieval time of Cen-
tipede with two consumer cloud storage (CCS): Onedrive
and WPS Netdisk. The results are shown in table II.

We can see that the retrieval speed of Centipede is on
average slightly slower than the tested CCSs. This is because

TABLE 11
DATA RETRIEVAL PERFORMANCE

Time (sec) Mean
Segment 1 Segment 2 Segmment 3 (i}[)le;e/g)

Size: 677.64MB Size: 417.89MB Size: 623MB

Onedrive 463.29 286.24 367.04 1.539
WPS Netdisk 488.32 431.21 463.26 1.242
Centipede 340.86 632.73 945.73 0.895

our main intuition is to protect the recording contents from
the geo-range attacks, thus would sacrifice some efficiency
for availability and confidentiality. Specifically, since the
involvement of erasure coding stores data in blocks in dis-
tributed camera nodes, the retrieval latency then depends on
the nodes with the poorest network situation. We highlight
that, compared with the CCS products, our prototype can
still provide acceptable efficiency with an average speed
of 0.895M B/s. We deter the optimization of transmission
efficiency to the future work.

C. Simulations

With simulation, we can perform a more comprehensive
evaluation since we can easily test different scenarios by
“deploying” more devices to random places. In our simula-
tions, we set the grid dimension to 100 x 100. We randomly
deploy 100 devices in the area. For each device, the number
of data blocks that need to be backup is set to 12.

We use RS code RS(12 : 8) as our erasure coding
algorithm. It applies Reed Solomon code to 8 data blocks



IEEE INTERNET OF THINGS JOURNAL

>
£

10

=

=
5

[ [__|pistributed
[ Storage First

¢ I Density First
- H} H:L H] H] H ..........

[ [__|pistributed
] Storage First
r I Density First

= = o= o=
=

s
T
>

N s o ®

> N 2 o ®
T

°

il

14l [ | Distributed
I:l Storage First
12r I Density First

10 -

gimmmmmmmmﬁmmmmmﬁ

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Attack Range (unit)

Average Number of Data Lost Devices
Average Number of Data Lost Devices

(a) Attack Strength oo = 0.01

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Attack Range (unit)

(b) Attack Strength o = 0.02

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Attack Range (unit)

Average Number of Data Lost Devices

(c) Attack Strength o = 0.03

Fig. 7. Comparison of three distribution order (Distributed, Storage First and Density First) in the field test. Note that the attack strength value @ = 0.01

implies a strong attack (refer to Eq. (1)).

to generate 4 redundant blocks, so that each data block
becomes unavailable only if five or more data blocks are
lost. Note that RS(12 : 8) has been used in various storage
systems, e.g., Baidu Atlas cloud storage system [37].

To evaluate Centipede, we assume single-point geo-range
attacks as well as multi-point geo-range attacks. For the
former, the starting point of the attack is randomly chosen
in the grid; for the latter, we choose two random starting
points in the grid. In addition, we vary the attack strength
a and the range of attacks r (refer to Eq. 1)). For each
scenario, we run the simulation 100 times and calculate the
average number of destroyed devices. In addition, we call
that a device has survived an attack if all the data of this
device can be recovered. For each scenario, we calculate
the average number of survived devices over the simulation
runs. Note that a destroyed device can be a survived device
if its data can be recovered.

1) Single-Point Geo-range Attack: Fig. 8(a), 8(b) and 8(c)
shows the evaluation results in the presence of single-point
geo-range attacks with o = 0.01,0.015 and 0.02 respectively.
We investigate the performance by gradually increasing the
range of the attacks. By comparing the figure 8(a), 8(b)
and 8(c), we can tell that as the value of « increases,
the number of survived devices goes up. This is because
according to Eq. (1), a higher o value means a weaker attack.
No matter what the attack strength is, the performance of
GEC is at least no worse than the other two strategies.
Centipede with GEC has more than 25% of device survival
rate when « is no less than 0.015, while K-Means and
Random strategies can only assure 20% of survival rate.
When facing a high strength attack with a larger range(eg.
a = 0.01), the GEC only has a very narrow margin. That is
because in this scenario most of the devices are covered
in the attack range, and the powerful attack can destroy
most of the devices within the attack range. In this situation,
distribution strategies cannot make many differences. But in
practice, this is not likely to happen, because it will take
a lot of effort to find and destroy all the devices within a
certain range.

By comparing the survival possibility under different
attack ranges, we can see that with the highest attack

strength(av = 0.01), when the attack range is under 35, for all
of the three attack strengths, Centipede is completely secure
with GEC strategy. When the attack range reaches 60, GEC
can protect around half of the devices. This is because in this
case most storage nodes fall within the attack range and may
be destroyed with high probability. With the decrement of
attack strength, the device survival possibility is increasing.
When the attack strength @ = 0.02, almost half of the
devices can survive. The K-means and Random strategies
have fared less well. In the single-point attack scenario, both
of their falling trends appear earlier than GEC. When the
attack range is 30, the survived device number drops in both
distribution strategies. And they both reach the lowest point
of survived device number in a smaller attack range.

2) Multi-Point Geo-Range Attack: Fig. 8(d),8(e) and8(f)
shows the evaluation results in the presence of multi-point
geo-range attacks with a = 0.01, 0.015 and 0.02 respec-
tively. Compared with single point attack, we can see that
the number of survived devices in multi-point attacks drops
faster than that in single-point attacks. Nevertheless, when
the ranges of the attacks are small (e.g., 30), GEC can ensure
100% device survival rate. When the attack range is no more
than 45, GEC can protect about 50% of the devices. This is
much better than K-means and Random. But when the attack
range rises to 75, there is no significant difference among the
three strategies. In this scenario, K-Means strategy has better
performance than Random strategy. With Random strategy,
there are devices fail when the attack range is 10, while K-
means can assure all the devices survive when the attack
range is under 20 with all attack strength.

VI. DISCUSSION

Based on our evaluation, we prove the following result:

First, Centipede can provide strong data protection in the
presence of geo-range attacks. For an attack to be effective,
the adversaries need to launch a strong attack (i.e., a low
value of o) and ensure a sufficient attack range. Simply
increasing the attack range or reducing the value of o cannot
cause a serious problem to Centipede.

The second result is, Centipede can provide higher avail-
ability and confidentiality than simple on-board solution.



IEEE INTERNET OF THINGS JOURNAL

11

= 100 T e £ 100 e £ 100 e )
5 < GEC 2 GEC 2 NS GEC
g K-Means| £ K-Means £ K-Means|
2 80 \ Random 2 80 N Random 2 80 Random ||
2 6 2 60 2 60 N
= = s
@ 40 N\ @»n 40 @ 40
& &% &%
£ 20 £ 20 £ 2
= Z 2

0 R 0 N 0

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Attack Range (Unit) Attack Range (Unit) Attack Range (Unit)

(a) Single point attack, oo = 0.01 (b) Single point attack, a = 0.015 (c) Single point attack, a = 0.02
= 100 e ——r—— = 100 = T ———— £ 100 = e
2 = GEC 2 '_\ GEC 2 S GEC
£ K-Means =] K-Means £ K-Means
2’ 80 \ Random E 80 Random 2 80 Random ||
@ 3 3
K > >
£ 60 z 60 £ 60
5 5 5
@ 40 @»n 40 @ 40
) \\ ) ] h
g 20 £ 20 £ 2
2 z Z —
< < < ‘

0 -
0 10 20 30 40 50 60 70 80 90 100
Attack Range (Unit)

(d) Multi point attack, o = 0.01

0 i ,
0 10 20 30 40 50 60 70 80 90 100
Attack Range (Unit)

(e) Multi point attack, o = 0.015

0 i
0 10 20 30 40 50 60 70 80 90 100
Attack Range (Unit)

(f) Multi point attack, o = 0.02

Fig. 8. Average survival number of devices with different strategies under single and multi-point attacks.

With erasure coding and encryption, Centipede can recover
the surveillance data even if one or more cameras are
damaged and prevent unauthorized access to the original data
even if the adversaries can get full control of several devices
in the network.

Besides, Centipede can reduce the video traffic to the
cloud. By baking up the surveillance video among the
cameras instead of the cloud, Centipede keeps most of
the surveillance data among the devices locally. With a
high-efficiency D2D transmission technique, Centipede can
fundamentally reduce the transmission pressure of cloud.

However, there are still some open problems:

The first problem is the overall transmission overhead. In
this paper, our target is to reduce the burden to the cloud
and keep most of the video workflow in the device level.
The overall transmission overhead is out of the scope of
this paper. Actually, with RS(n, k) erasure coding, the total
size of the data transmitted in the system is n/k times of the
original data. But most of these workloads are transmitted
among local storage devices but not to the cloud. With the
D2D transmission technique, these data can be transmitted
effectively among devices without additional burden to the
cloud and Internet.

The second problem is the limitation of erasure coding.
Though GEC could maximize the security of Centipede,
if most of the devices fall in the attack range with a
high probability of being destroyed, erasure coding cannot
guarantee the recovery of original data. The only way to
avoid the problem is to back up the data remotely. This is
beyond the scope of this article.

The third problem is the Coordinator could be a vulner-

ability of the system. As a virtual component, in this paper,
we assume it is deployed on the cloud or remotely with
high law enforcement. And its security issue is not within
the scope of this paper.

The fourth problem is the retrieval performance of Cen-
tipede. With Geo-aware Erasure Coding, Centipede assures
the effectiveness of data retrieval. Though we take the
network delay into account when back up the surveillance
data, the retrieval performance could be further improved
with better arranged underlying networks.

VII. CONCLUSION

By designing, implementing, and evaluating Centipede,
we present a cooperative video data storage system for
surveillance cameras to reduce the pressure on cloud server.
Compared with simple on-board data storage solution, Cen-
tipede can protect the surveillance system against geo-
range attack. The risk of geo-range attacks is prominent
in recent terrorist attacks or non-peaceful protests. With
Centipede, we can recover a camera’s surveillance data from
distributed backup even if the camera is physically damaged
by the attacker. With a novel idea called geo-aware erasure
coding, Centipede generates erasure coded data blocks and
distributes the encoded blocks to geographically dispersed
surveillance cameras. In this way, Centipede can enhance
the security of the whole system in the presence of single-
point and multi-point geo-range attacks. With encryption and
erasure coding, it can also prevent unauthorized access to
the original data even if the adversaries can get full control
of several devices in the network. In the future, we plan
to remove the coordinator introduced in Centipede to avoid



IEEE INTERNET OF THINGS JOURNAL

single point failure and develop a fully distributed solution
against geo-range attacks.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China (62072465), Key-Area Re-

search and Development

Program of Guang Dong

Province(2019B010107001), the National Key Research and
Development Program of China (2018 YFB0204301) and the
NUDT Research Grants (No. ZK19-38).

(1]

(2]

3

—

[4]

(5]

[6

[t

(71

[8

=

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

H. Wu, J. Zhang, Z. Cai, F. Liu, Y. Li, and A. Liu, “Toward energy-
aware caching for intelligent connected vehicles,” IEEE Internet of
Things Journal, vol. 7, no. 9, pp. 8157-8166, 2020.

S. Roy, “China’s didi uses ai-powered facial recognition feature to
boost safety,” Website, 2020, https://techwireasia.com/2020/01/chinas-
didi-uses-ai-powered-facial-recognition-feature-to-boost-safety/.

R. Freeman, “Cameras to keep a watchful eye on bus lanes,” Website,
2020, https://www.punchline-gloucester.com/articles/aanews/cameras-
to-keep-a-watchful-eye-on-bus-lanes.

M. Hamzei and N. Jafari Navimipour, “Toward efficient service
composition techniques in the internet of things,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3774-3787, 2018.

G. Forecast, “Cisco visual networking index: global mobile data
traffic forecast update, 2017-2022,” IEEE Transactions on Industrial
Informatics, vol. PP, no. 99, pp. 1-1, 2020.

T. Zhou, B. Xiao, Z. Cai, and M. Xu, “A utility model for photo
selection in mobile crowdsensing,” IEEE Transactions on Mobile
Computing, vol. 20, no. 1, pp. 48-62, 2021.

J. Li, Z. Li, G. Tyson, and G. Xie, “Your privilege gives your privacy
away: An analysis of a home security camera service,” in Proc. of the
IEEE Conference on Computer Communications (Infocom), 2020.

S. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan, and
P. V. Kumar, “Erasure coding for distributed storage: an overview,”
Science China Information Sciences, vol. 61, no. 10, p. 100301, 2018.
Y. Liu, L. Kong, G. Chen, F. Xu, and Z. Wang, “Light-weight ai
and iot collaboration for surveillance video pre-processing,” Journal
of Systems Architecture, p. 101934, 2020.

P. Hu, J. Im, Z. Asgar, and S. Katti, “Starfish: Resilient image
compression for aiot cameras,” in Proceedings of the 18th Conference
on Embedded Networked Sensor Systems, ser. SenSys 20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 395-408.
L. D. Chamain, S. S. Cheung, and Z. Ding, “Quannet: Joint image
compression and classification over channels with limited bandwidth,”
in Proc. of the IEEE International Conference on Multimedia and
Expo (ICME), 2019, pp. 338-343.

S. Chen, S. Zhang, X. Zheng, and X. Ruan, “Layered adaptive
compression design for efficient data collection in industrial wireless
sensor networks,” Journal of Network and Computer Applications,
vol. 129, pp. 37 — 45, 2019.

A. Al-Dulaimy, W. Itani, J. Taheri, and M. Shamseddine, “bwslicer:
A bandwidth slicing framework for cloud data centers,” Future
Generation Computer Systems, vol. 112, pp. 767 — 784, 2020.

H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo, “Unidrive: Synergize
multiple consumer cloud storage services,” in Proc. of the 16th Annual
Middleware Conference (Middleware), 2015.

X. Cai, S. Geng, D. Wu, J. Cai, and J. Chen, “A multi-cloud
model based many-objective intelligent algorithm for efficient task
scheduling in internet of things,” IEEE Internet of Things Journal,
pp. 1-1, 2020.

E. Jinlong, Y. Cui, P. Wang, Z. Li, and C. Zhang, “Cocloud: Enabling
efficient cross-cloud file collaboration based on inefficient web apis,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 1,
pp. 56-69, 2017.

X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: Scaling live
video analytics with workload-adaptive distributed edge intelligence,”
in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, ser. SenSys *20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 409-421.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

12

C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in Proc. of the IEEE/ACM Symposium on
Edge Computing (SEC), 2018, pp. 115-131.

H. Chen, J. Yu, F. Liu, Z. Cai, and J. Xia, “Archipelago: A medical
distributed storage system for interconnected health,” IEEE Internet
Computing, vol. 24, no. 2, pp. 28-38, 2020.

Z. Wei, B. Zhao, and J. Su, “Pda: A novel privacy-preserving
robust data aggregation scheme in people-centric sensing system,”
International Journal of Distributed Sensor Networks,2013,(2013-11-
19), vol. 2013, no. 4, pp. 1-9, 2013.

M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Pro-
cessor hardware security vulnerabilities and their detection by unique
program execution checking,” in Proc. of the Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1EEE, 2019, pp.
994-999.

B. Schneier, K. Seidel, and S. Vijayakumar, “A worldwide survey
of encryption products,” Berkman Center Research Publication, no.
2016-2, 2016.

S. Sahraei and M. Gastpar, “Increasing availability in distributed
storage systems via clustering,” in Proc. of the IEEE International
Symposium on Information Theory (ISIT). 1EEE, 2018, pp. 1705—
1709.

X. Xie, C. Wu, J. Gu, H. Qiu, J. Li, M. Guo, X. He, Y. Dong, and
Y. Zhao, “Az-code: An efficient availability zone level erasure code to
provide high fault tolerance in cloud storage systems,” in Proc. of the
35th Symposium on Mass Storage Systems and Technologies (MSST).
IEEE, 2019, pp. 230-243.

X. Li, R. Li, P. P. C. Lee, and Y. Hu, “Openec: Toward unified
and configurable erasure coding management in distributed storage
systems,” in Proceedings of the 17th USENIX Conference on File and
Storage Technologies, ser. FAST’19. USA: USENIX Association,
2019, p. 331-344.

W. Liang, Y. Fan, K. C. Li, D. Zhang, and J. L. Gaudiot, “Secure data
storage and recovery in industrial blockchain network environments,”
IEEE Transactions on Industrial Informatics, vol. PP, no. 99, pp. 1-1,
2020.

Y. Zou and K. Chakrabarty, “Uncertainty-aware and coverage-oriented
deployment for sensor networks,” Journal of Parallel and Distributed
Computing, vol. 64, no. 7, pp. 788-798, 2004.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
erasure codes for distributed networked storage,” IEEE/ACM Trans-
actions on Networking (TON), vol. 14, no. SI, pp. 2809-2816, 2006.
S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their

applications. John Wiley & Sons, 1999.

C. Huang, G. Huang, W. Liu, R. Wang, and
M. Xie, “A parallel joint optimized relay selection
protocol  for  wake-up radio enabled wsns,”  Physical

Communication, vol. 47, p. 101320, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1874490721000574
S. Atapattu, N. Ross, Y. Jing, Y. He, and J. S. Evans, “Physical-layer
security in full-duplex multi-hop multi-user wireless network with
relay selection,” IEEE Transactions on Wireless Communications,
vol. 18, no. 2, pp. 1216-1232, 2019.

Y. Zhong, T. Han, Q. Li, and X. Ge, “Delay and physical layer security
tradeoff in large wireless networks,” in Proc. of the IEEE International
Conference on Communications (ICC). 1EEE, 2018, pp. 1-7.

T. Y. Liu, K. J. Lin, and H. C. Wu, “Ecg data encryption then
compression using singular value decomposition,” IEEE Journal of
Biomedical and Health Informatics, vol. 22, no. 3, pp. 707-713, 2018.
A. Al-Ani, M. Anbar, R. Abdullah, A. K. Al-Ani, and S. Al-Mashhadi,
“Propose a new approach for securing dhcpv6 server in ipv6 link-local
network,” in Intelligent and Interactive Computing. Springer, 2019,
pp. 365-376.

E. Erkut, “The discrete p-dispersion problem,” European Journal of
Operational Research, vol. 46, no. 1, pp. 48-60, 1990.

A. Rodriguez and A. Laio, “Clustering by fast search and find of
density peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, 2014.
C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
“Atlas: Baidu’s key-value storage system for cloud data,” in Proc.
of the 31st Symposium on Mass Storage Systems and Technologies
(MSST), 2015, pp. 1-14.



IEEE INTERNET OF THINGS JOURNAL

Jiaping Yu received his M.S. degree in informa-
tion science and technology from Temple Univer-
sity, Philadelphia, USA, in 2017. He is currently
working toward the Ph.D. degree at the College of
Computer, National University of Defense Tech-
nology (NUDT), Changsha, China.

His current research interests include dis-
tributed systems, blockchain, and edge computing.

Haiwen Chen received his M.S. degree in
computer science and technology from the Na-
tional University of Defense Technology (NUDT),
Changsha, China, in 2017, where he is currently
working toward the Ph.D. degree at the College
of Computer.

His current research interests include dis-
tributed systems, edge computing, and machine
learning.

Kui Wu received the B.Sc. and M.Sc. degrees in
computer science from Wuhan University, Wuhan,
China, in 1990 and 1993, respectively, and the
Ph.D. degree in computing science from the Uni-
versity of Alberta, Edmonton, AB, Canada, in
2002.

He joined the Department of Computer Science,
University of Victoria, Victoria, BC, Canada, in
2002, where he is currently a Professor. His
current research interests include network perfor-
mance analysis, online social networks, Internet
of Things, and parallel and distributed algorithms.

Tongqing Zhou received the bachelor’s, mas-
ter’s, and Ph.D degrees in Computer Science and
Technology from National University of Defense
Technology (NUDT), Changsha, in 2012, 2014,
and 2018, respectively.

He is currently a postdoc in College of Com-
puter, NUDT. His main research interests include
ubiquitous computing, mobile sensing, and data
privacy.

Zhiping Cai received the B.S., M.S., and Ph.D.
degrees in computer science and technology from
the National University of Defense Technology
(NUDT), Changsha, China, in 1996, 2002, and
2005, respectively.

He is currently a professor with the College of
Computer, NUDT. His current research interests
include network security and big data. Dr. Cai is
a member of IEEE and a senior member of the
China Computer Federation.

13

Fang Liu received the B.S. and Ph.D. degrees
in computer science from the College of Com-
puter, National University of Defense Technology
(NUDT), Changsha, China, in 1999 and 2005,
respectively.

She is currently a professor with the School of
Design, Hunan University , Changsha, China. Her
current research interests include computer archi-
tecture, edge computing, and storage systems.



