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Resolving Multi-task Competition for Constrained
Resources in Dispersed Computing: A Bilateral

Matching Game
Hongjia Wu, Jiao Zhang, Zhiping Cai*, Qiang Ni, Tongqing Zhou, Jiaping Yu, Haiwen Chen and Fang Liu*

Abstract—With the explosive emergence of computation-
intensive and latency-sensitive applications, data processing could
be envisioned to perform closer to the data source. Similar
to edge and fog computing, dispersed computing is considered
as a complementary computing paradigm, which can excavate
potential computation resources in the network to users, and
serve as a supplement for sharing computational burden when
the edge is overloaded. In this paper, we first make full use
of idle and geographically dispersed computation resources via
task offloading, contributing to conserve energy for mobile
devices. Specially, a dispersed computing offloading framework
concerning the interests of users and networked computation
points is proposed. We further transform the initial problem
into a multi-objective optimization problem subject to latency
and resource constraints. To tackle such a complex problem,
an energy-saving bilateral matching algorithm is designed to
obtain the optimal task offloading strategy. The simulation results
demonstrate that our proposed algorithm can outperform the
benchmark schemes in terms of user fairness and can achieve a
relatively balanced energy cost ratio. Furthermore, comparative
experiments with edge computing are implemented in Amber
Response and Disaster Relief scenarios respectively to reveal the
advantages of the proposed framework.

Index Terms—Dispersed computing, idle computation re-
sources, energy-saving, multi-objective, bilateral matching, of-
floading.

I. INTRODUCTION

W ITH the increasing evolution of embedding processing
into “smart” network nodes [1] (such as smartphones,

watches, and automobiles, etc.), the in-network computing
paradigms such as edge computing [2] and fog computing
have drawn unprecedented attention. Through offloading the
computation-intensive tasks to the edge servers of networks
[3]–[5], the computation experience and the battery lifetime of
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smart devices can be greatly improved. However, due to the
constrained computation capacity, economic cost and network
scalability, edge servers are generally distributed deployment.
The conflict between computation tasks and limited resources
is inevitable, when massive mobile devices send requests to
the edge servers.

To deal with this conflict, some methods [6]–[9] propose
to leverage the collaboration among edge servers to achieve
load balancing, thereby reducing the computational burden on
the high-load edge servers. Whereas, such edge collaboration-
based methods are usually designed for scenarios with suf-
ficient network state information, and are not suitable for
dynamically changing network environments. To better cope
with the network dynamics, a series of learning-based methods
are proposed [10]–[12], wherein the optimal offloading strat-
egy can be learned without knowing the prior knowledge of
network dynamics. However, these proposals rely on the wide
deployment of computation infrastructure (e.g., edge servers),
which cannot scale to the sudden surge of traffic or network
service damages due to disasters. Introducing mobile devices
(e.g., mobile phones, drones) [13]–[16] to overcome the com-
putation resources limitations in these situations provides a
promising alternative, especially considering the occasionally
vacant computation capacity on-board. Yet, it is non-trivial to
accommodate the distributed devices for dynamic computation
tasks as the involvement will incur additional costs.

Driven by the popularity of Internet of Things (IoT) devices,
dispersed computing [17], [18] as a new computing paradigm
is eye-catching. Based on the mutual aid idea of “one for all
and all for one”, dispersed computing can adequately leverage
the idle computation resources of surrounding available de-
vices. Fig. 1 shows a dispersed computing offloading frame-
work composed of a group of networked computation points
(NCPs) [19], which form a collaborative organic network to
provide users with scattered, closer, and diverse offloading
services. At the same time, some offloading techniques for
dispersed computing [19]–[23] have attracted attention, in-
volving graph task allocation and throughput optimization.
However, the offloading problem of multi-user multi-task oc-
cupying multi-NCP resources has not been taken into account,
especially the energy consumption concerns for both types
of entities during the offloading. Note that it is critical to
attain energy efficiency when the computation is conducted by
resource-limited end devices. Therefore, the goal of this work
is to provide a complementary dispersed computing framework
that can adapt to dynamic tasks request with energy-awareness
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for both the user devices and the NCPs.

Fig. 1: Dispersed computing offloading framework

Nevertheless, due to the collaboration of computation re-
sources and the sharing of iterative information, the man-
agement of dispersed computing is inherently difficult for
several reasons. First, the computation resources and lifetime
of NCPs are limited. NCPs should have the right to select
the offloading requests to maximize their interests. Second,
there is competition among users for limited resources of
NCPs. Moreover, the tasks generated by different users might
differ in computational complexity and data volumes. The
allocation of heterogeneous resources should be compatible
with the users’ interests. Third, most devices are private, so the
unnecessary information interaction between devices should
be avoided. Therefore, the design of dispersed computing
offloading algorithms that balance the interests of users and
NCPs to efficiently utilize dispersed and heterogeneous idle
resources is a critical problem. Solving such a problem yields
three open technical challenges:

• How to make full use of idle and geographically dispersed
NCPs?

• How to handle user competition for limited resources?
• How to reduce the information interaction among devices

and achieve dispersed computing?

To address these challenges, users and NCPs are encouraged
to make independent decisions to maximize their interests. We
further formulate the task offloading process as a distributed
multi-objective minimization problem. Then, we propose an
energy-saving dispersed matching algorithm for balancing the
interests of multiple objectives. In detail, the main contribu-
tions of the paper can be summarized as follows.

• We first present a dispersed computing offloading frame-
work involving multi-user, multi-task, and multi-NCP,
which takes into account the interests of users and NCPs,
as well as the allocation of computation and communi-
cation resources.

• An energy-saving bilateral matching based dispersed
offloading strategy is proposed, which can effectively
realize the dispersed task offloading and reduce the
interaction between users and NCPs. On this basis, the
stability, local optimality, and Price of Anarchy of the
proposed algorithms are analyzed and proved.

• Extensive simulations and scene based experiments are
developed to evaluate the performance of our algorithm
and highlight the advantages of dispersed computing
compared with edge computing. The results show that
the user fairness of the proposed algorithm is improved
by 14.2% and 20.1% on average compared to the full
search (FS) and random (RAN) algorithms. Moreover,
our proposed framework outperforms the edge computing
scheme on average by 54.9% for user energy cost,
especially in a harsh network environment.

The rest of this paper is organized as follows. In Section
II, we briefly introduce related works. Then, we present our
system model and problem formulation in Section III. We
propose an energy-saving bilateral matching based dispersed
offloading strategy in Section IV and theoretical analysis
in Section V. Extensive simulations and scene comparison
experiments are conducted in Section VI and VII, respectively.
Finally, we conclude the paper in Section VIII.

II. RELATED WORKS

A. Tasks offloading for edge computing

There are many offloading methods for edge computing
scenarios. Among them, more efforts have been dedicated
to utilizing edge collaboration [6], [7], artificial intelligence
[10]–[12] and additional assistance (phones, drones, etc.) [13]–
[15]. For example, a collaborative task offloading mechanism
(CTOM) for mobile cloudlet networks was designed in [6]
to achieve more efficient and low-cost load balancing. Ana-
jemba et al. [7] introduced a distributed multi-access MEC
collaborative offloading technology based on the sub-optimal
Lagrangian method. Whereas, these edge collaborations con-
sider situations with sufficient network status information and
cannot handle the changing network environment well. In
order to cope with the dynamic and real-time changes of the
network environment, Chen et al. [10] proposed an offloading
algorithm based on the double-deep Q network (DQN). The
optimal strategy can be learned without knowing the prior
knowledge of network dynamics. In [11], a deep reinforce-
ment learning (DRL) algorithm was proposed to learn the
optimal computing offloading and packet scheduling strategy.
Feng et al. [12] developed a collaborative computing offload
and resource allocation framework for blockchain-supported
MEC systems. Moreover, An Asynchronous Advantage Actor-
CRITIC (A3C) Reinforcement Learning Algorithm is devel-
oped for the dynamic characteristics. However, these works
are based on fixed infrastructures and lack scalability. As a
result, it is unable to respond flexibly to the sudden surge of
traffic or damage due to disasters and other reasons.

To increase the flexibility of the offloading framework, the
work assisted by mobile devices has been focused on. Feng
et al. [13] designed a device-to-device (D2D) communication-
assisted traffic offloading scheme, which exploits D2D com-
munications to assist traffic offloading from cellular to WiFi
in integrated cellular-WiFi networks. Shang et al. [14] in-
creased their overall profits by encouraging users to act as
D2D transmitters, broadcasting their popular content to nearby
users. In [15], the drone plays the role of a cloud in the sky,
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assisting the MEC to collect and process the computation tasks
offloaded by the ground users. Nevertheless, these introduced
auxiliary devices require additional costs. Furthermore, the
above studies ignore the potential idle resources in the network
and the utilization value of nearby computation points.

B. Tasks offloading for dispersed computing

Different from the edge-oriented researches, some people
began to pay attention to task offloading in dispersed com-
puting [19]–[22], considering the ubiquitous idle devices with
limited resources in the network. For example, Knezevic et
al. [20] developed a runtime scheduling software tool for
dispersed computing. It can deploy pipeline computing on
multiple geographically dispersed computation points in the
form of a directed acyclic graph. Ghosh et al. [21] designed a
container orchestration architecture for dispersed computing.
The system automatically and efficiently distributes tasks
among a group of networked computation nodes. Hu et al. [22]
proposed a throughput-optimized task scheduler for computer
vision and video processing applications. To capture the het-
erogeneity of computation and communication in the network,
Yang et al. [19] investigated a Max-Weight type scheduling
policy, which is throughput-optimal for the proposed virtual
queuing network. However, energy cost is not well studied in
dispersed computing. Note that the energy cost is a critical
metric for mobile devices due to the limited energy of devices
and NCPs, particularly in dispersed computing scenarios that
motivate our work in this paper.

TABLE I: System Model Parameter Definitions and Notations

Notation Definition
M Number of users
K Number of tasks per user
N Number of NCPs
Xikj Indicates if user i’s k-th task is offloaded to NCP j
τik The k-th task of user i
Dik Amount of data for user i’s k-th task
Cik Required CPU cycles for user i’s k-th task
Tmaxik Maximum latency for user i’s k-th task
rikj Transmission rate of user i offloading k-th task to NCP j
gikj Channel gain of user i offloading k-th task to NCP j
sikj Computation resources allocated by NCP j to i’s k-th task
sj Processing speed of NCP j
Bj Total bandwidth of NCP j
qj The number of tasks that NCP j has accepted
qmaxj Maximum number of tasks that NCP j can accept
pikj Transmission power of user i offloading k-th task to NCP j

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

In this paper, we consider a multi-user, multi-task, and
multi-NCP dispersed network shown in Fig. 2, which consists
of M users and N NCPs. The sets of users and NCPs
are denoted by M= {1, 2, · · · ,M} and N= {1, 2, · · · , N},
respectively. Without loss of generality, we assume that each
user has K independent computation-intensive tasks denoted
by K= {1, 2, · · · ,K}. In the dispersed network, each task can
be processed locally or offloaded to an appropriate NCP with
idle resources. The location of each node is assumed to be

known [24](e.g. using GPS or some positioning methods).
The system model parameters and descriptions are provided
in TABLE I.

Fig. 2: An example of a dispersed network that consists of
M = 3 users, K = 3 or 4 tasks and N = 4 NCPs

Let τik = {Dik, Cik, T
max
ik } be the k-th computation task

of user i, then it can be described as:
• The input Dik is defined as the amount of data for user i’s
k-th task, including system settings and input parameters.

• Cik is the number of CPU cycles required to complete
the task.

• Tmaxik represents the maximum acceptable latency for the
user i’s k-th task.

We assume that the computation task is atomic, and cannot
be divided into sub-tasks. To facilitate the analysis, we make
the common assumption that the set of devices changes slowly
[25].

B. Energy Cost Model

In what follows we introduce the energy cost model under
the constraints of computation and communication resources
in the dispersed computing system.

1) Computation energy cost: We assume that the CPU
processor of each device has speed scaling capability, charac-
terized by a speed–power curve, which is defined as a function
of its processing speed sj . Here, we consider different devices
have distinct processing speeds. The power consumption of a
processor increases in proportion to the speed. Furthermore,
the speed-power curve is [26] usually modeled by the polyno-
mial function P (sj) = µjs

α
j , where µj and α are the device-

related parameter.
Given P (sj), the computation energy cost required for NCP

j to perform user i’s k-th task is expressed as

ecomikj = P (sikj)
Cik
sikj

, (1)

where sikj is the computation resources allocated by NCP
j to user i’s k-th task, defined as sikj = sj/qj . qj =∑M
i=1

∑K
k=1Xikj is the number of offloading tasks to NCP

j. It should be noted that ecomikj is not only determined by
Cik, sikj and sj , but also affected by the maximum number
of offloading tasks qmaxj that the NCP j can accept, that is,
qj ≤ qmaxj .
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2) Communication energy cost: We adopt Orthogonal Fre-
quency Division Multiple Access (OFDMA) technology as the
communication mode for data transmission to avoid mutual in-
terference between communication links [27]. The achievable
uplink transmission rate between user i and NCP j can be
defined as

rikj(Xikj , X−ikj) =
Bj
qj
· log2(1 +

pikjgikj
σ2

), (2)

where Bj is the total bandwidth assigned by NCP j. pikj is
the transmission power from user i offloading task k to NCP
j, and σ2 is the noise power. gikj is the channel gain between
user i and NCP j, which is related to the distance between
the devices.

So the transmission energy cost of user i offloading task k
to NCP j can be denoted as

etikj = pikj
Dik

rikj(Xikj , X−ikj)
. (3)

Meanwhile, the energy cost required for NCP j to receive
the user i’s k-th task can be obtained as

erikj = pikjgikj
Dik

rikj(Xikj , X−ikj)
. (4)

3) Total energy cost: We define the total energy cost from
the perspective of users and NCPs, respectively. Each user
needs to decide whether to handle tasks locally or offload tasks
to the idle NCPs for execution. A binary variable Xikj ∈
{0, 1} is denoted as the offloading decision, where i ∈ M ,
k ∈ K, and j ∈ N . Specifically, Xikj = 1 means that user i
decides to offload its k-th task to NCP j. Overall, each task
can only be handled by one NCP or local device (j = 0 means
local computing).

(1) Energy cost of users
The energy cost of user i consists of the computation energy

for task execution, or the communication energy required to
transmit the offloading tasks. Thus, the energy cost etaskikj of
task k can be expressed as

etaskikj (Xikj , X−ikj) =

{
Xik0e

com
ik0 , j = 0

Xikje
t
ikj , j ∈ N . (5)

Using the above notation, the energy cost of user Euseri can
be calculated by

Euseri =

K∑
k=1

N∑
j=0

etaskikj (Xikj , X−ikj)

=

K∑
k=1

Xik0e
com
ik0 +

K∑
k=1

N∑
j=1

Xikje
t
ikj .

(6)

We ignore the energy consumption of other hardware com-
ponents (e.g., RAM), which are generally much less significant
[28].

(2) Energy cost of NCPs
The energy cost of NCP j includes the energy needed to

perform offloaded tasks and the energy needed to receive the

tasks. Thus, the energy cost encpikj of task k can be expressed
as

encpikj (Xikj , X−ikj) =

{
0, j = 0

Xikj(e
com
ikj + erikj), j ∈ N

. (7)

Therefore, the energy cost Encpj of NCP j can be calculated
by

Encpj =

M∑
i=1

K∑
k=1

encpikj (Xikj , X−ikj)

=

M∑
i=1

K∑
k=1

Xikj(e
com
ikj + erikj).

(8)

Assume that the energy and time used to transmit the
communication results from the NCP j to the user i can be
neglected [29]. Finally, we define the total energy cost of users
and NCPs as Euser and Encp, respectively.

C. Problem Definition
Based on the above formulation, we then formally define

the offloading problem between multi-user and multi-NCP as
the optimization of both users’ and NCPs’ energy costs during
the involvement. On one hand, the users, which have tasks to
execute and offload, will compete with each other for obtaining
NCPs’ computation resources. During the competition, each of
them makes the decision of whether to offload the local tasks
so that all the tasks can be performed under the completion
time constraints. Hence, the optimization problem for the user
side is formulated as

User : min
Xikj∈{0,1}

Euseri

s.t. C1 : Xik0
Cik
s0

+ (1−Xik0)Xikj(
Dik
rikj

+ Cik
sikj

) ≤ Tmaxik

C2 : Xikj ∈ {0, 1} ,∀j ∈ N ∪ {0}
C3 :

∑N
j=0Xikj = 1

C4 : i ∈M, k ∈ K, j ∈ N
(9)

,where C1 ensures that task τik is completed within the latency
constraint. C2 indicates whether user i’s k-th task is offloaded
to the j-th NCP, which is also affected by the following
optimization problem (10). C3 ensures that each task can either
be processed by one NCP or finally conducted by the user
device locally, indicating that the task is atomic and cannot be
divided.

On the other hand, from the perspective of NCPs, energy-
saving tasks within the constraints of their computation and
communication resources are favored. To this end, each NCP
attempts to find the optimal acceptable offloading tasks as

NCP : min
Xikj∈{0,1}

Encpj

s.t. C1 : Etotalj − Encpj ≥ δj
C2 :

∑M
i=1

∑K
k=1Xikjsikj ≤ sj

C3 :
∑M
i=1

∑K
k=1XikjBikj ≤ Bj

C4 :
∑M
i=1

∑K
k=1Xikj = min[

∑M
i=1

∑K
k=1Xikj , q

max
j ]

C5 :
∑M
i=1

∑K
k=1Xikj ≤ qmaxj

C6 : i ∈M, k ∈ K, j ∈ N
(10)
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,where C1 means the minimum energy limit for each NCP,
which is individualized; C2 and C3 represent the computation
and communication resource constraints of each NCP; C4 and
C5 indicate the lower and upper limits on the number of tasks
that the j-th NCP needs to receive, which are related to the
offloading decision given by the users. One might argue why
the NCPs are willing to contribute their idle resources. The
reason behind the design is two-fold: (1) It is the underlying
idea of dispersed computing that one with idle computation
resources shall share the available capacity with the peer
devices. As a reward, an involved party can get help from
the community to release the local computation burden. (2)
The computation capacity sj for the j-th NCP is in fact its
available resources out of its whole resource pool, thus can
be shared without impacting the normal execution of its own
tasks.

Considering the optimization process on both sides, we
state that the offloading problem in fact is transformed into
a distributed multi-objective optimization problem. Besides,
since the two optimization problems have a common solution,
it is also a two-way selection problem. We hope that with this
solution, each user will be matched to an NCP, while each
NCP can get the appropriate offloading tasks.

IV. AN ENERGY-SAVING BILATERAL MATCHING BASED
DISPERSED OFFLOADING STRATEGY

The multi-objective optimization problem is proved to be
NP-hard [30]. Its solution can be found by searching for
all possible offloading decisions. However, the computational
complexity of the full search is exponential. To efficiently
solve the problem with lower complexity, we propose a
matching game based task offloading strategy due to the two
disjoint sets of users and NCPs.

A. Matching Concepts

To model the distributed multi-objective optimization
problem as a one-to-many matching game with resource
and latency constraints, we consider the task set Γ =
{1, 2, · · · ,M} × {1, 2, · · · ,K} and NCP set N =
{1, 2, · · · , N} as two teams of players. Specifically, in the
matching game, each NCP plays the vendor role and the tasks
act as the buyers. It is notable that matching is bilateral, in
the sense that a task is admitted at a given NCP only if the
NCP admits that task. Formally, we define the matching game
as follows.

Definition 1: Given two disjoint finite sets of players, Γ =

{τi}|Γ|(i=1) and N = {nj}|N |j=1, let two disjoint finite sets of
SΓ = {1, · · · , |Γ|} and SN = {1, · · · , |N |}, then a one to
many matching function Ψ [31]: {Γ}∪ {N} → {Γ}∪ {N} is
defined such that for all i ∈M ×K and j ∈ N

(i) Ψ(τi) ∈
{
nj′∈SΓ ∈ N

}
and |Ψ(τi)| ∈ {0, 1}

(ii) Ψ(nj) ⊆
{
τi′∈SN ∈ Γ

}
and |Ψ(nj)| ≤ qmaxn

(iii) Ψ(τi) = nj ⇔ Ψ(nj) = τi.
Thus, the matching game Ψ can be defined by a tuple

{Γ,N , qmaxn ,�τ ,�n}, where qmaxn is the NCP n’s quota
vector. Here, �τ and �n represent the set of the preference

relations of tasks and NCPs, respectively. Condition (i) implies
that each task can only be offloaded to one NCP at most.
Condition (ii) represents the maximum number of offloading
tasks that each NCP can accept, corresponding to C5. The
condition (iii) indicates that if τi matches nj , then nj is also
matched to task τi. The output of this game is a set of matching
pairs < τi, nj >i∈Γ,j∈N between tasks and NCPs.

Algorithm 1: Preference List Generation for Each Task
with Respect to {Tmaxτ }τ∈Γ

Input: Task set Γ = {τ1, τ2, · · · .τΓ}, NCP set
N = {n1, n2, · · · .nN}, the knowledge of
NCPs: dτn, sn, qn.

Output: The set of task decisions and preference list
of tasks: Xτ , Lτ , ∀τ ∈ Γ.

1 Initialization: Lτ = 0, X = 0;
2 for τ = 1 to |Γ| do
3 for j = 1 to |N | do
4 if Dτ

rτj
+ Cτ

sτj
<Tmaxτ then

5 Generate Lτ using (11), and sort in
descending order;

6 Find the top ranked j′ in Lτ and setting Xτj′ = 1;

7 return Lτ , Xτ

Algorithm 2: Matching evaluation for each NCP with
respect to {δj}j∈N
Input: Lunmatched, Lτ and Xτ , ∀τ ∈ Γ.
Output: Lunmatched, Lmatched and Lτ .

1 for j = 1 to |N | do
2 for τ = 1 to |Lunmatched| do
3 if Xτj = 1 and Etotalj − Encpj ≥ δj then
4 Generate Lj using (12), and sort in

descending order;

5 if qj < qmaxj then
6 Accept the top ranked τ ′ in Lj ;
7 Lacceptj = Lacceptj ∪ < τ ′, j >;
8 qj = qj + 1;
9 Lunmatched = {Lunmatched \ τ ′};

10 else
11 Lj = Lj ∪ Lacceptj ;
12 Select the top qmaxj tasks:

Lacceptj = Lj [: q
max
j ];

13 Lunmatched =
{
Lunmatched \ Lj [: qmaxj ]

}
;

14 Lunmatched = Lunmatched∪
{
Lj \ Lj [: qmaxj ]

}
;

15 for τ to |Lunmatched| do
16 Lτ = {Lτ \ j}
17 Lmatched ← Lacceptj

18 return Lunmatched, Lmatched and Lτ
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B. Preference Profiles of Players

For each player, the preference profile is used to rank the
other players. In the proposed game Ψ, tasks and NCPs could
use available information to build their preference profiles,
respectively. For simplicity, we denote τ as any task in the
task set Γ.

Definition 2: The preference Pτ (n) of task τ for different
NCPs can be defined as

Pτ (n) =
Bn
qn
log2(1 +

pτngτn
σ2

). (11)

This preference function is established to achieve the energy
saving of users, where each task prefers to associate with NCP
at the maximum transmission rate. According to the preference
function, the task prefers NCPs with larger bandwidth, more
quota vectors, and shorter distance.

Definition 3: The preference Pn(τ) of NCP n for different
tasks can be defined as

Pn(τ) = 1/Cτ . (12)

For the NCP, a small amount of computation can save its
computation overhead and energy consumption, so that it has
the opportunity to provide computing services to more users.
Thus, NCPs prefer tasks that require fewer CPU cycles.

Algorithm 3: Task-NCP Bilateral Matching Algorithm
Input: The prior knowledge: Γ, N , dτj , sj .
Output: The set of matching results for stable

matching Ψ∗: Lmatched.
1 Initialization: Lmatched = 0, Lunmatched = Γ;
2 repeat
3 Run Algorithm 1;
4 if Lunmatched 6= null then
5 if Lτ 6= null then
6 Run Algorithm 2;
7 Update Lτ according to the latest

information from NCPs;
8 else
9 Choose local processing: j = 0 ;

10 Update Lmatched;

11 else
12 The algorithm is terminated;

13 until convergence to a stable matching;
14 return Lmatched : < τi, nj >i∈Γ,j∈N

C. Task-NCP Bilateral Matching Algorithm

The Task-NCP bilateral matching algorithm (TN-matching)
consists of two major sub-algorithms, as shown in Algorithm
1 and Algorithm 2, respectively. In our design, Algorithm 1
solves the task assignment problem of users. A user finds
the best offloading decision to minimize energy consumption
based on the task preference value. Algorithm 2 solves the
problem of NCPs’ offloading task selection. Based on the
offloading requests given by the users, the NCP chooses

to accept the offloading tasks which make it energy-saving.
Algorithm 3 combines Algorithm 1 and Algorithm 2 to solve
the matching problem between tasks and NCPs, and achieves
the final stable matching between them iteratively.

For Algorithm 1, it has two phases, namely the network
information phase and the task preference list generation
phase.

1) Network information: Each NCP periodically broad-
casts its idle resource information; Each user discovers idle
resources around and collects required network parameters.
The network information includes the available NCPs’ com-
putation capacities, distances, and the number of tasks that
can be received at the moment. This step provides important
information for subsequent evaluation.

2) Task preference list generation: First, each task selects
the NCPs within the delay constraint based on the parameters
obtained in phase 1. Then, based on the task preference
function of Eq. (11), calculate the preference values of the
selected NCPs and sort them in descending order (line 2-
6). It is worth noting that the preference function here is
the key to Algorithm 1, which directly affects the final task
assignment. Finally, we select the top-ranked NCP in the task
preference value list Lτ as the current decision. Meanwhile,
make a record locally and send it to the corresponding NCP for
feedback. Based on the above content, the users complete the
best task assignment decision for the purpose of minimizing
energy consumption.

For Algorithm 2, it has two phases, namely the NCP pref-
erence list generation phase and matching evaluation phase.

3) NCP preference list generation: After Algorithm 1 is
executed, NCPs will receive offloading requests from the users.
The NCP receiving the requests first eliminates tasks that will
consume more than its energy constraints (line3). Then, each
NCP calculates the preference values for the remaining tasks
according to Eq. (12) and ranks them in descending order
(line4). Note that the preference function calculation (line4)
here is an important step of Algorithm 2, which aims to help
NCPs prioritize tasks with low computation and energy saving.

4) Matching evaluation: Each NCP accepts the top qmaxj

tasks in preference list Lj that meet the energy constraints,
and the others are rejected. If quota qj is not full, the NCP
selects the offloading task in the ranking order. Meanwhile, the
matching relationship is established, and the accepted tasks are
removed from Lunmatched (line 5-9); Otherwise, the new task
request is added to the preference list Lj , and Lj is reordered
(line10-14). Then, update the preference list Lτ of rejected
tasks by deleting the current top-ranked NCP j (line 15-16).
The above process is the key to NCP’s independent evaluation
and decision-making.

Finally, the TN-matching process is concluded in Algorithm
3, where the matching result is iteratively updated until it
converges to a stable solution. Rematch the tasks in the
unmatched set Lunmatched and find all lower ranked j′ than
j until j can be admitted. If there is no match with any j
until the preference list of task τ is null, the task selects local
processing, that is, j = 0. We should know that each user
and NCP run Algorithm 1 and Algorithm 2 respectively, and
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certain communication and interaction are required between
them.

V. THEORETICAL ANALYSIS

In this section, we give a series of theoretical analysis on the
stability, local optimality, Price of Anarchy, and complexity of
the Task-NCP bilateral matching algorithm, which are defined
to evaluate the principle and performance of the algorithm.

A. Stability Analysis

The goal of the algorithm is to find a stable offloading
decision, where stability is the key concept in matching theory
[32], which is defined as follows.

Definition 4: (Blocking Pair) The pair (τ ′, n′) is a blocking
pair [33] for the matching Ψ, only if τ ′ �n′ τ , τ ∈ Ψ(n′) and
n′ �τ ′ n, n ∈ Ψ(τ ′), for τ ′ /∈ Ψ(n′) and n′ /∈ Ψ(τ ′). Par-
ticularly, the definition of the blocking pair can be presented
mathematically as

(∀τi ∈ Γ, nj ∈ N)((τi,Ψ(τi)), (nj ,Ψ(nj)))⇒
(∃τ ′ ∈ Γ, n′ ∈ N)((τ ′,Ψ(τi)), (n

′,Ψ(nj))).
(13)

In other words, there exists a partnership (τ ′, n′) such that
τ ′ and n′ are not matched with each other under the current
matching Ψ but prefer to be matched with each other.

Definition 5: (Stable Matching) A matching Ψ is said to
be stable if it admits no blocking pair [34].

Theorem 1: The matching Ψ∗ produced by TN-matching is
stable.

Proof. Assume that tasks τ1 and τ2 match n1 and n2, re-
spectively. But n2 �τ1 n1, so τ1 must have sent a request to
n2 at a certain stage. Unfortunately, n2’s own preference list
rejected τ1. So, we can clearly see that τ2 �n2

τ1. There is no
possibility that τ1 prefers n2, and n2 also prefers τ1. According
to Definition 4, there are no blocking pairs. Furthermore, by
Definition 5, the matching Ψ∗ produced by TN-matching is
proved to be stable.

The stability analysis of the algorithms in this paper is on
the theoretical level, but it will be affected by some factors in
the real environment. There are two main influencing factors,
one is the network communication status, and the other is the
total number of tasks that all NCPs can receive. In terms of
network status, real-time communication of basic information
should be guaranteed. When the network status is poor, the
information transmission speed is slow, but fortunately, the
amount of information required for our proposed scheme is
small. Moreover, the distance between the devices is short
compared to the cloud or edge server, thus the impact is not
significant but there will be a slight delay in decision-making.
Whereas, if all devices are broken or the network is completely
disconnected, the stability cannot be guaranteed. There are
two situations in terms of the total number of tasks: When the
number of tasks NCP can receive is greater than or equal to the
total number of tasks, all tasks can find the appropriate NCP,
and the matching is stable; When the number of tasks that the
NCP can receive is less than the total number of tasks, there

are tasks that cannot match the NCP. However, it is assumed
in our algorithm that all tasks do not match any NCP, and the
local computing is allowed as well, which ensures the final
stable matching and convergence. In summary, we find that
the proposed algorithms still has good stability in reality.

B. Local Optimality Analysis

Theorem 2: The outcome of TN-matching is a local optimal
solution to the multi-objective optimization problem.

Proof. Suppose that n1 selects q tasks τ1, τ2,... τq from all
the requested tasks, and rejects other tasks including task τ ′.
It can be seen that tasks τ1, τ2,... τq (including tasks that have
been rejected by other NCPs) prefer n1 to other NCP n. To
make a hypothetical arrangement here, we match task τ ′ to n1,
then at least one τi has to choose a n′ with a preference less
than n1. However, if you follow this arrangement, the utility
of both players will be reduced, represented by the following
mathematical form

Pτi(n
′) < Pτi(n1) and Pn1

(τ ′) < Pn1
(τi), (14)

which will cause the algorithm to be unstable.
According to Definition 4, Definition 5 and Theorem 1,

there are no blocking pairs in the final matching, and the
algorithm is stable. In addition, only the NCP side performs
“reject” during the iterative process of TN-matching. As a
result, the TN-matching converges to a local optimal solution
to the problem.

C. Price of Anarchy

We have shown that the Ψ∗ is a stable matching and now
address the important question how far the total user energy
cost would be from the optimal in a stable matching. To
quantify the difference from the optimal performance, we use
the Price of Anarchy (PoA), defined as the ratio of the worst
case user energy cost to the minimal user energy cost

PoA =
max

∑
i∈M Euseri (Ψ∗)

min
∑
i∈M Euseri (Ψ)

, (15)

where Ψ∗ means a stable matching. In what follows we give
an upper bound to the PoA. Note that here we only consider
the PoA for the one-sided (user) market.

Theorem 3: The price of anarchy for the matching game
Ψ∗ is upper bounded by∑

τ∈M×K e
com
τ0∑

τ∈M×K min {ecomτ0 , ¯eτ1, ¯eτ2, · · · , ¯eτN}
. (16)

Proof. First we show that if there is a stability in which
all tasks are executed locally then it is the worst case for
stable matching. Let Ψ∗ be an arbitrary stable matching,
then X∗ is the offloading decision of Ψ∗. Observe that
etτj(X

∗
τj , X

∗
−τj) ≤ ecomτ0 holds for every task τ ∈ M × K.

Otherwise, if ∃τ ∈ M ×K enables etτj(X
∗
τj , X

∗
−τj) > ecomτ0 ,

task τ would have an incentive to deviate from decision
X∗τj , which contradicts our initial assumption that X∗τj is the
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offloading decision of a stable matching Ψ∗. Thus, for any
stable matching Ψ∗, etτj(X

∗
τj , X

∗
−τj) ≤ ecomτ0 holds.

Next, let us consider an arbitrary offloading decision
(Xτj , X−τj) ∈ X . If Xτ=0 (Xτ=

∑N
j=1Xτj), then

etaskτj (Xτj , X−τj)=ecomτ0 . Otherwise, if Xτj=1 for a j ∈ N ,
we have the best case Xτ ′=0 for every τ ′ ∈ {M ×K \ τ},
and thus

∑N
j=1 qj=1.

Therefore, rτj(Xτj , X−τj) ≤ Bj log2(1 +
pτjgτj
σ2 ), which

implies

pτj
Dτ

rτj(Xτj , X−τj)
≥ pτj

Dτ

Bj log2(1 +
pτjgτj
σ2 )

= ¯eτj . (17)

Hence, etτj(Xτj , X−τj) ≥ min {ecomτ0 , ¯eτ1, ¯eτ2, · · · , ¯eτN}
and∑
τ∈M×K

etτj(Xτj , X−τj) ≥
∑

τ∈M×K

min {ecomτ0 , ¯eτ1, ¯eτ2, · · · , ¯eτN} .

Using these expressions, we can establish the following
bound as

PoA =
max

∑
i∈M Euseri (Ψ∗)

min
∑
i∈M Euseri (Ψ)

≤

∑
τ∈M×K

ecomτ0∑
τ∈M×K

min {ecomτ0 , ¯eτ1, ¯eτ2, · · · , ¯eτN}
,

(18)

which proves the theorem.

We provide an upper bound for the PoA in case of the users,
that is, when all users have the same parameters.

D. Complexity Analysis

Theorem 4: The TN-matching algorithm converges within a
limited number of iterations, and the computational complexity
is O(max(|Lτ |τ∈Γ)·max(|Lj |j∈N ))+O(N ·max(|Lτ |τ∈Γ)).

Proof. The complexity required to generate preference lists
for users and NCPs is O(max(|Lτ |τ∈Γ) · max(|Lj |j∈N )).
And the running time to sort the preference list of users and
NCP using the standard sorting algorithm is O(max(|Lτ |τ∈Γ)·
logmax(|Lτ |τ∈Γ)) and O(max(|Lj |j∈N ) · logmax(|Lj |j∈N )), re-
spectively. Note that in a matching game, ∀τ ∈ Γ, |Lτ | ≤ |N |
and ∀j ∈ N, |Lj | ≤ |Γ|.

To analyze the complexity, we first consider the best case,
where each task is accepted by its preferred NCP, and the
complexity is O(1). In the worst case, each task is rejected N
times, which means that N+1 rounds of matching are needed
to get the final result (not received by NCP, processed locally).
In each round, once a NCP has to decide whether to replace
the existing task, they need to calculate the satisfaction and
the complexity of this process is O(max((|Lj |+ 1)j∈N )). At
the end of each round, the preference list of each task needs
to be updated with a complexity of O(max((|Lτ | − 1)τ∈Γ)).
Therefore, the time bottleneck of the algorithm in the best
case is the generation of the preference list, and the computa-
tional complexity is O(max(|Lτ |τ∈Γ)·max(|Lj |j∈N )). In the
worst case, the computational complexity is O(max(|Lτ |τ∈Γ)·
max(|Lj |j∈N )) +O(N ·max(|Lτ |τ∈Γ)).

Based on the above analysis, we find that the complexity
of the algorithm is polynomial, where |Γ| = |M ×K| is the
number of tasks and |N | is the number of NCPs. Thus, the
algorithm is able to achieve the converged state within several
iterations since the sizes of two preference sets Γ and N are
finite.

VI. NUMERICAL EVALUATIONS

In this section, we show simulation results under different
network settings to evaluate the performance and computa-
tional efficiency of our proposed algorithm and reveal insights
about it.

A. Evaluation Setup

We consider that users and NCPs are randomly distributed
in a 1km ∗ 1km 2D plane. We assume that the channel gain
gikj is proportional to dγikj , where dikj is the distance from
user i to NCP j, and γ = 4 [35], [36] is the path loss
index. The channel bandwidth Bj of j-th NCP is uniformly
distributed within [3, 10]MHz, while the transmission power
pikj is set to 0.5W. The computation capacity s0 of users is
uniformly set to 0.5GHz [37], while the NCPs are drawn from
a continuous normal distribution on [0.4, 2]GHz. The input
data size Dik and the required CPU cycles Cik are uniformly
distributed across [3, 10]Mb and [0.1, 1]Gcycles, respectively.
The residual energy threshold δj of j-th NCP is randomly
distributed in [5, 10]J. The device-related parameter α has been
usually assumed to be around 3 [26]. The default number of
NCPs is 4 with a quota of [3, 1, 2, 4], and the number of tasks
per user is 2.

B. Baseline Setup

For effective and fair comparisons, we introduce the full
search algorithm (FS) and random algorithm (RAN) for com-
parison. We devise FS using exhaustive traversal, where each
task is matched with each NCP once to find the offloading
decision with the optimal total energy cost. For RAN, the
user selects NCP in a random manner and the NCP randomly
accepts offloaded tasks. Based on the series of settings above,
we show a comprehensive comparison and analysis for the
algorithms in terms of total energy cost, user energy cost ratio
(UEC), NCP energy cost ratio (NEC), Jain’s fairness index of
users [38] and iteration times.

C. Evaluation Results and Analysis

In general, the proposed TN-matching outperforms RAN
substantially and is close to the FS in terms of total energy
cost, which validates the theoretical results. For fairness of
users, the TN-matching improves on average 14.2% and 20.1%
compared to the FS and the RAN. Moreover, which effectively
promotes the balance of energy cost between the users and the
NCPs, rather than just focusing on the total energy cost.
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Fig. 3: Total Energy Cost Fig. 4: User Energy Cost Ratio Fig. 5: NCP Energy Cost Ratio

1) Total energy cost: As shown in Fig. 3, we can see that
the TN-matching saves 30.8% more energy on average than
RAN in total energy cost and is close to that of FS optimal
solution as the number of users increases from 2 to 10. This is
because the FS algorithm is optimized for the total energy cost.
However, TN-matching takes the energy cost of each user and
NCP as the optimization objectives, which is a multi-objective
optimization. To balance the interests among the objectives,
resulting in a loss of total energy cost. For RAN, the user’s
offloading decision is randomly selected, and the NCP also
accepts the requests randomly without considering its energy
cost, leading to poor performance. We can also find that the
total energy cost of the three algorithms is on the rise as
the number of users increases. This is because more users
mean more data to be processed, which leads to an increase
in transmission cost or computation cost, thus increasing total
energy consumption.

Fig. 6: Fairness Index of Users

2) Energy cost ratio of users and NCPs: From Fig. 4 and
Fig. 5, we can observe the gap between the UEC ratio and
NEC ratio for FS and RAN is average 21.2% and 34.8%,
whereas TN-matching is only 5.6%. The reason for these
results is that the UEC ratio and NEC ratio are two game
parameters, and TN-matching can maintain the balance of
energy cost of both sides. Furthermore, TN matching makes
the offloading decision from the perspectives of users and

NCPs, respectively. It optimizes the total energy cost while
promoting the balance of bilateral energy consumption and
avoids excessive unilateral cost. However, FS only ensures that
total energy costs are minimized and does not pay attention
to the energy costs of NCPs and users.

3) Fairness of users: Our simulation results show that
the TN-matching outperforms RAN and FS in terms of user
fairness as the number of users increases from 2 to 10. We
can observe from Fig. 6 that the fairness of users obtained
by the TN-matching is 14.2% and 20.1% better than FS and
RAN respectively, thus reflecting better user fairness. The
reason accounts for these results is that TN-matching is a
dispersed algorithm, each user makes the offloading decision
for itself. The advantage is that users can maximize their
respective interests, thereby narrowing the gap between them.
However, FS focuses on minimizing total energy cost, ignoring
individual interests. This will result in a low total cost, but
the energy cost of a certain node is extremely high, which is
unfair. For RAN, the random selection of task offloading is the
essence of its fluctuating fairness. We can also see that the user
fairness shows a downward trend with the user number. The
reason is that NCP will be fully utilized as the task demand
increases, but the fairness of users will be reduced due to the
different quotas of NCPs.

Fig. 7: The Number of Iterations
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4) The number of iterations: To evaluate the computational
complexity of the TN-matching algorithm, we investigate
the number of iterations versus the number of users. Our
simulation results show that TN-matching is 86% iterations
less than FS on average, which grows slowly as the user
increases from 2 to 10. This is consistent with the complexity
analysis in V-D. As we know, FS is an exhaustive global
search that needs to traverse each NCP, so the number of
iterations increases monotonically with the number of users.
However, TN-matching takes each user’s preference sequence
as a reference and chooses NCP with preference, which greatly
reduces the complexity of the algorithm and can achieve
fast convergence. For RAN, the task randomly selects one
NCP each time. Once rejected, it will be processed locally.
Therefore, the number of iterations is not affected by the
number of users and the maximum is 2.

VII. DISPERSED COMPUTING VS. EDGE COMPUTING

To further evaluate our proposed algorithm, we conduct two
comparison experiments with the edge computing scheme in
terms of total user energy cost, as shown in Fig. 8.

Fig. 8: Dispersed computing vs. Edge computing

A. Evaluation Setup

We assume that an edge server is randomly distributed
on a 10km ∗ 10km 2D plane to provide services for users
within its communication range. Meanwhile, N=4 idle compu-
tation devices (mobile phones, computers, etc.) are randomly
distributed around the users, and the distances are within
the connected range [0.01, 1]km. The powerful computation
capacity of edge sever is set to 10GHz, while the NCPs are
normally distributed on [0.4, 2]GHz. According to the different
network environments, it can be divided into two scenarios:
1) Amber Response (good network environment): B=10MHz;
2) Disaster Relief (poor network environment): B=1MHz.

B. Experimental Results and Analysis

For the Amber Response scenario, we can observe from Fig.
8 that the total user energy cost of TN-matching outperforms

the edge scheme by 41.5% on average as the number of
users increases from 2 to 10. The reason is that when a
large number of devices in the coverage area make offloading
requests for the edge cloud at the same time, it will inevitably
cause problems such as excessive load pressure and low
transmission efficiency. However, our proposed TN-matching
for dispersed computing makes full use of idle computation re-
sources around users, which not only shortens the transmission
distance during offloading, but also alleviates the congestion
problem. To a certain extent, the transmission energy con-
sumption of users is greatly reduced. We can also see that the
energy cost of both TN-matching and edge scheme increases
monotonically with the user number. For TN-matching, the
idle computation resources are limited in dispersed computing.
When the number of tasks far exceeds the available resources,
some tasks cannot be offloaded, resulting in a greater increase
in user energy cost. Faced with the same situation, the edge
solution consumes more energy during offloading due to its
relatively long communication distance and congestion.

The obtained result from the Disaster Relief experiment
highlights the TN-matching more than that from the Amber
Response experiment. As shown in Fig. 8, the total user energy
cost of TN-matching lower than that of edge scheme by 68.2%
on average with the user number. We find that our proposed
TN-matching is more suitable for scenarios with harsh network
environments. We can explain that when the network condition
is bad, the network speed is very slow or even unable to
connect. For the edge computing scheme, the transmission
cost of offloading will increase dramatically. However, due
to the proximity of the devices, the dispersed computing
scheme can self-organize into an organic network, so that the
communication is not affected by the adverse environment, and
users’ energy can be greatly conserved by offloading.

Through the comparison and analysis of the two scenarios,
we reveal insights that TN-matching has advantages over the
edge scheme, especially in poor network environments.

VIII. CONCLUSION

In this paper, we propose a dispersed computing offloading
framework involving users and NCPs. To realize the frame-
work, the task offloading process is modeled as a distributed
multi-objective minimization problem. Then, we propose an
energy-saving dispersed offloading algorithm named “Task-
NCP bilateral matching”, and present the specific theoretical
analysis. The simulation results show that in terms of user
fairness, the proposed algorithms improve on average by
14.2% and 20.1% compared with the baselines. Moreover,
scene comparison experiments demonstrate that the proposed
framework provides a feasible energy-saving scheme for the
poor network environment.

Some works have focused on resource allocation and task
offloading in dispersed computing, involving static and dy-
namic algorithms. Whereas there is a fact that cannot be
ignored, that is, most of the networked computation points
in the dispersed network are personal private devices, and
it is difficult for them to participate in computing services
for free in reality. Therefore, an incentive-driven offloading
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mechanism for dispersed computing is needed in future work.
However, designing such a dispersed incentive mechanism will
face some new challenges. For example, how to encourage idle
devices to actively participate in the offloading mechanism to
help reduce the computational load on the network ? How
to efficiently manage various idle resources? Our next work
will focus on these new challenges and study how to design
a situation-aware dispersed computing framework based on
adaptive incentives.
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