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Abstract—Existing mobile photo crowdsensing approaches focus on the participant-to-server photo pre-selection, i.e., reducing the

photo redundancy from participants to a server. The server may still receive plenty of photos for a target area. Yet, another important

problem is to select a proper photo subset of an area from the server to a requester. This is a challenging problem because the selected

subset with a small size should attain both coverage on the PoIs - Points of Interest (i.e., photo coverage of the area) and quality on the

views (i.e., view quality). In this paper, we propose a novel and generic server-to-requester photo selection approach even when there

are neither photo shooting direction information nor reference photos. A utility model is designed to measure photo merits of coverage

and quality by exploiting photos’ spatial distribution and visual representativeness. We present two photo selection schemes, basic and

PoI number-aware, to maximize the photo selection utility with multiple levels of granularity. Experimental results on real-world datasets

show that our basic scheme outperforms the baselines by an average of 33% and 18:7% on photo coverage and view quality,

respectively. Our PoI number-aware scheme can yield an additionally 44.8 percent improvement on the photo coverage performance.

Index Terms—mobile crowdsensing, photo selection, photo coverage, view quality, ubiquitous computing

Ç

1 INTRODUCTION

THE prevalence of sensor intensive mobile devices and
the demand for pervasive sensing led to the emer-

gence and adoption of a new sensing paradigm, known
as mobile crowdsensing (MCS) [1], [2]. Instead of relying
on pre-deployed specialized sensors, MCS exploits the
mobile devices of individuals to sense and collect real-
time environment data [3].

Photo mobile crowdsensing is a predominant technique
in the MCS paradigm due to the clarity of the visual sens-
ing services it provides [4] and has fueled a large amount
of applications [5]. A typical application scenario for photo
mobile crowdsensing is to facilitate online city views (e.g.,
street view). Industries usually use a war-driving way or
leverage passive collection [6], [7] to provide coarse-
grained and infrequently updated views for a target. While
with MCS, we can obtain more detailed, on-demand, and
specific views with the wide-spread crowd’s (e.g., visitors’)
eyes [8], [9], [10]. A sketch of the photo mobile crowdsens-
ing process is shown in Fig. 1, where a participant-to-server
photo pre-selection stage and a server-to-requester photo selec-
tion stage are conducted before presenting the final visual
report to the requester. Existing work usually focuses on
the pre-selection stage for the server to eliminate the

photo redundancy and to achieve transmission efficiency
[11], [12], [13], [14], [15].

Photo selection is performed on behalf of the requester
with the goal of providing an informative area view, thus
being a new problem. In order to help the requester to
understand the target area comprehensively and clearly, the
server-to-requester photo selection should attain photo cover-
age by capturing as many Points of Interest (PoIs) in the area
and attain view quality with clear and accurate views. We
name such a goal of maintaining certainty on views (i.e., not
blocked, blurred, or wrong direction views) and achieving
coverage on PoIs as certain coverage. In fact, plenty of pho-
tos are still aggregated to the server from the crowd even
with pre-selection. As a result, the photo selection stage for
the transmission of limited photos to the requester, if not
being carefully performed, would ruin the effectiveness of
MCS and degrade requester experience.

Existing pre-selection approaches fail to consider the
uncertainty properties (e.g., a blurred or opposite-view) of
crowdsensing photos, thus are not helpful to mitigate the
challenges in the photo selection stage. Specifically, in order
to facilitate good photo coverage, existing approaches usu-
ally leverage a variety of geometric data (especially photos’
shooting direction information) to formulate exact coverage
models based on the collected photos [11], [16]. However,
we point out that the required shooting direction informa-
tion in these approaches is in fact not recorded by the built-
in camera applications of mobile devices. Since photos at a
location may have different views when taken in different
directions, the photo coverage of an area becomes unsure.
When referring to view quality, previous data quality esti-
mation approaches in MCS usually assume that there exists
a quality criterion for the sensory data such that they could
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use data analysis techniques (e.g., EM [17], [18], cluster-
ing [19]) or crowdsourcing [20] to qualify the photo collec-
tion. However, a photo’s view quality is related to the
potential PoIs in the target area. It is hard to make certain
quality criteria with no reference photos from an uncharted
area. Hence, the photo selection for certain coverage is still
challenging when considering the photo uncertainties.

In this paper, we propose a novel server-to-requester
photo selection approach for MCS. Our approach aims at
finding a representative photo subset from the geo-tagged
crowdsensing photo collection. The geo-tagged photos have
simple location information but without any additional
metadata. Our approach can also guarantee area’s view
quality without any reference photos. Compared with [21],
this paper make improvement by exploiting valuable con-
text information (i.e., the PoI number information) to facili-
tate representative selection with better coverage.

Different photo subsets provide distinct views of an
area. Some may miss important information to illustrate
the target. Thus, we design a utility model to assess the
merit of a photo subset for the requester to view an area.
The model leverages two factors. The first factor is the spa-
tial diversity, to quantify the area coverage based on the
distribution entropy of photo locations. The underlying
idea is that two photos located in different subareas cap-
ture either two different PoIs or different aspects of one
PoI. Hence, we could improve the coverage of PoIs and
their aspects by finding a uniformly distributed photo set
using this factor. The second factor is the content influence,
to quantify the view quality of photos. Note that useful
photos of one PoI share some similarities on visual while it
is opposite for useless photos. We measure the content
influence of a photo subset by calculating the visual corre-
lation between it and its complementary set. The larger the
content influence is, the better the view quality that a
selected photo subset has.

Our photo selection approach consists of two schemes oper-
ating on different levels of granularity based on our utility
model. The basic selection scheme (BPS) attempts to find a
photo subset with the maximum utility at the entire photo
selection granularity, which is proven to be NP-hard with a
reduction from the maximum cut problemwith given sizes of
parts. A greedy strategy that iteratively picks out the photo
with the best utility gain is then adopted in BPS in order to gen-
erate the approximately best photo selection. Meanwhile, we
consider cases where the number of PoIs is known and design
a PoI number-aware photo selection scheme (PAPS) accord-
ingly. PAPS represents photos in form of an undirected graph
based on a novel graph similaritymodel. Then it performs BPS
at the photo cluster granularity through grouping photos with

the spectral clustering technique. Since photos’ utility is care-
fully considered during selection, we can attain with BPS and
PAPS good performance on certain coverage.

We highlight that our schemes only need the generalized
location metadata and the visual content during selection,
which makes them immune to the photo uncertainties.
Extensive experiments are conducted on real-world datasets
to demonstrate the effectiveness and performance of our
approach. The main contributions of this work include:

1) We analyze the certain coverage challenges caused
by photo uncertainties in server-to-requester photo
selection for MCS. As far as we are aware, this is the
first attempt to attain good photo coverage of a target
area with uncertain crowdsensing photos.

2) We design a novel utility model to measure the photo
coverage and viewquality performance of a photo set.

3) Wepropose two schemes for photo selectionwithmul-
tiple levels of granularity. The BPS scheme selects the
maximum utility photo set. The PAPS scheme exploits
a novel graph similarity model for fine-grained photo
selection. Finding the maximum utility in BPS is
proven to be NP-hard and a ð1�1=eÞ approximation
greedy algorithm is proposed accordingly.

4) We evaluate the schemes with three real-world
photo datasets. Experimental results show that our
BPS scheme outperforms the existing clustering-
based approach [12] and the random selection
approach by at least 23 and 16 percent on photo cov-
erage and at least 12 percent and 6 percent on view
quality, respectively. Meanwhile, our PAPS scheme
yields an average of 44.8 percent better photo cover-
age than BPS in the PoI number-aware cases.

The rest of the paper is organized as follows. Related work
of photo selection inMCS is discussed in Section 2. In Section 3,
we introduce the photo selection problem in MCS tasks and
analyze the challenges in achieving certain coverage during
photo selection. In Section 4, we present our utility model for
measuring the certain coverage performance of a photo subset.
We introduce the design of our basic photo selection scheme
and PoI number-aware photo selection scheme in Section 5.
Then we evaluate the proposal and explain the results in
Section 6. Finally, we discuss on the limitations and implica-
tions of thiswork and conclude this paperwith Sections 7 and 8.

2 RELATED WORK

We review the relevant work in two main areas: MCS photo
selection and data quality estimation in MCS. We also dis-
cuss the differences of our work.

2.1 MCS Photo Selection

Existing work on MCS photo selection mainly focuses on
the participants-to-server photo selection stage, which
attempts to discard redundant reports and to upload valu-
able photos with limited resources. The corresponding
approaches can be classified into two categories based on
the different strategies they adopt, namely, coverage maxi-
mization or redundancy minimization.

For coverage maximization, SmartPhoto [22] quantifies a
photo’s coverage as the PoI aspects it captures and selects
photos that captures the most aspects. Among its follow-up

Fig. 1. An illustration of the participant-to-server photo pre-selection
stage and the server-to-requester photo selection stage in a photo MCS
task. These two stages are performed with different goals, photo redun-
dancy reduction, and certain coverage of an area, respectively.
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work, delivery probability of photos is considered in [23] in
order to maximize the expectation of PoI aspects coverage
with the selected photo subset based on delay tolerant net-
works (DTNs). In [11], a photo’s utility is represented as a
circular sector (i.e., area coverage) and the selection problem
transforms into maximizing the size of the polygon that cov-
ered by the selected photos. However, the required shooting
direction information in these approaches is in fact not
available as the built-in camera applications on mobile devi-
ces will not record it. We point out that it will discourage
the participation of the mobile users by requiring them to
install additional applications for information collection.

Another strategy for participants-to-server photo selection
is to minimize the redundancy in the crowdsensing photos.
PhotoNet [13] reduces redundancy among delivered photos
by prioritizing the transmission of photos that present diver-
sity on time, color, and space. PhotoNet+ [24] further regards
photos within certain distance as redundant and proposes to
group photos into clusters based on their logical distances dur-
ing photo selection. CARE [14] and Smarteye [15] use image
similarity detection algorithms to eliminate similar-looking
photos during data delivery. In [12], a PTree model is devel-
oped to enable photo selection based on clustering, where one
photo is selected from each cluster with the rest photos in that
cluster regarded as redundant reports. Focusing on redun-
dancy elimination or the diversity properties during selection
may accidently introduce outlier, namely, the irrelevant and
inaccurate photosmay be favored for delivery.

Different from the above work, we investigate the photo
selection problem in the server-to-requester stage of the
MCS tasks. Such a selection process cares more about find-
ing a photo subset to satisfy the requester’s expectation in
viewing and understanding the target area than eliminating
redundancy. Namely, we try to find representative photos
for the requester. A closely related research field is scene
summation [25] that chooses views from an online photo set
for highlights. Photos that span the visual feature space [6],
[25],[26] or time domain [27] are picked out during summa-
tion. In comparison, we focus on the photo coverage and
view quality of a photo selection as they are the essentials
for a crowdsensing task to be informative and satisfactory.

2.2 Data Quality Estimation in MCS

Lots of work has been done for estimating data quality in
MCS [17], [18], [19]. However, schemes belonging to this

category are usually tailored for the structured data (i.e.,
decimal measurements or binary observations), thus would
fail to handle the unstructured photos. For example, we can
pick out the high quality ingredient from the decimal data
through Expectation Maximization (EM), while calculating
the expectation of several photos is meaningless.

In respect of photo quality estimation, a crowdsourcing-
based photo quality verification method that sends out pho-
tos with unknown quality together with reference photos is
adopted in [20]. However, reference photos are not available
for either automatically or manually verification of the
uncharted target areas in MCS applications. In [16], [28],
[29], some no-reference photo techniques are proposed by
exploring the context information, such as photos’ light
intensity and motion blur, for quality assessment. In this
work, we pay more attention to avoiding photos with
blocked views and wrong shooting directions as they are
not helpful for depicting the target area.

Existing approaches on MCS photo selection and data
quality estimation cannot be simply combined or directly
applied to our scenarios due to the uncertainty properties of
crowdsensing photos.We attempt to find a high quality photo
subset from the uncertain photos (i.e., photos with merely
generalized information) for the requester in this paper.
Finally, this work significantly extends our preliminary work
in [21]. We adopt a more realistic photo coverage model by
considering photos’ coverage performance on PoIs’ aspects.
Rather than assuming absolutely unknown context informa-
tion, the selection approach proposed in this paper operates
on two levels of granularity by referring to the PoI number
information, which yields better coverage performance. We
introduce the clustering-based selection approach in [12] to
evaluate the performance of the proposal and present more
detailed comparison between the two proposed schemes
based on three newphoto datasets we collected.

3 PROBLEM STATEMENT

3.1 The Process of Photo Selection

As an essential stage of photo MCS, photo selection is per-
formed by the server to obtain a photo set for the concern of
the requester under the offloading constraint. We can depict
the selection process of a typical photo MCS task with
Fig. 2. Among all the steps, those pointing at the mobile par-
ticipants facilitate visual sensing for the target and the other
steps retrieve a representative photo summation to the

Fig. 2. A typical photo MCS task example in which the photo collection and selection process for a campus scenario is presented.
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requester based on the photo selection strategy. Specifically,
in order to campaign a photo MCS task, the requester first
releases a query for visuals of a target area via the server.
Mobile crowd within certain spatial boundary are recruited
as participants (participatory sensing with or without mone-
tary incentives [1]), and the built-in camera applications on
their own mobile devices are used to collect photos for PoIs
in the area. In fact, photos can be either just captured or
records stored in the albums. Each photo pi has a location
tag Li, which denotes where it is captured and can be easily
extracted from the photo’s EXIF header.1

A large amount of photos can be collected with even only
one photo from each participant. Offloading all these photos
is undoubtedly not efficient for the requester considering the
huge transmission overhead and the inconvenience of view-
ing photos on the small screens of mobile devices. Hence, a
photo selection process is conducted in the 5th step in Fig. 2
to distill a representative subset for the requester. As shown
in the 4th step in Fig. 2, the crowd-contributed photos
together capture a group of PoIs with varied quality on the
views (e.g., clear view, blocked view). To this end, in order
to satisfy the requester’s expectation in understanding the
area, the selection process should attain both photo coverage
to cover as many PoIs and view quality to provide useful
summations (i.e., certain coverage). The server can access the
photos and in some cases, the PoI number information, dur-
ing photo selection, which can facilitate both a basic selection
strategy and a PoI number-aware selection strategy (we will
discuss about this in Section. 5).

3.2 Certain Coverage and Its Challenges

We formulate the certain coverage-oriented photo selection
problem and describe its challenges as follows. We denote
D¼fp1; :::; png as the raw crowdsensing photo collection, K
as the maximum number of photos that could be offloaded,
and I (I � D; jI j � K) as the selected photo subset (i.e.,
photo selection). Within the target area AT , a group of uni-
formly distributed objects (i.e., PoIs) are captured by the
photos in D. Specifically, the photos of the ith PoI constitute

subset Sipoi � D, with which we have
S npoi

i¼1 Sipoi � D (npoi is

the number of PoIs captured by D).2 Since Sipoi consists of
photos capturing different PoI aspects (i.e., views from dif-
ferent directions), we further denote the photo subset that
belongs to the jth aspect of the ith PoI as Sijasp. Obviously,

we can have
S niasp

j¼1 Sijasp¼Sipoi (ni
asp is the number of different

aspects for the ith PoI).

Definition 1 (Photo Coverage). Photo coverage quantifies
how well the PoIs are geographically captured by the photos in
selection I and is formulated as,

CðIÞ¼�
Xnpoi
i¼1

Xniasp
j¼1

gðI \ SijaspÞ �
Xnpoi
i¼1
ðRi � log 2 RiÞ: (1)

The first term of Eq. (1) denotes the number of covered PoI

aspects with gðAÞ¼ 0; if A¼;
1; otherwise

�
. The second term is the

entropy of photo distribution for each PoI, where Ri¼
jI\Si

poi
j

jI j

and jAj is the number of photos in set A.
A photo set that can cover as many aspects of the PoIs

uniformly has a large photo coverage and is preferred dur-
ing selection.

Definition 2 (View Quality). View quality quantifies the
view acceptance level of the photos in selection I . Generally,
a photo is determined to have a good view quality if it does
not provide a blocked (the PoI is blocked by an obstacle,
e.g., the 4th photo in Fig. 2) or blurred view, or shooting at
a wrong direction (no object is captured, e.g., the 8th photo
in Fig. 2). Then the view quality of a selection I can be
defined as,

QðIÞ¼1�nIin
jI j ; (2)

where NIin is the number of unexpected photos with low quality
in I .

Definition 3 (Certain Coverage). We define certain coverage
of a photo set as an integrated performance metric of its photo
coverage in space and its view quality in content,

V ðIÞ¼ðkCðIÞkþkQðIÞkÞ=2; (3)

where k � k denoted normalization operation.

However, it is hard (if not impossible) to find the photo
selection with the best certain coverage from the raw collec-
tion. The challenges are that CðIÞ and QðIÞ cannot be
directly assessed in the server due to the uncertainty prop-
erties of crowdsensing photos:

� The shooting direction information of crowdsensing
photos is not recorded in the built-in camera applica-
tions of mobile devices. Meanwhile, the distribution
of potential PoIs (i.e., PoIs’ locations) is unknown for
an uncharted sensing area. As a result, the server
cannot figure out the geographical relations between
I and PoIi in Eq. (1).

� There are usually no reference photos for the
uncharted area in a photo MCS task. Hence, we can-
not simply assess QðIÞ by comparing photos in I
with a predefined visual criterion and calculating
the numberNIin.

Facing these challenges, existing approaches require the
participants to provide additional metadata information to
estimate photo coverage [11], [23] and to verify view quality
manually [20]. In order to provide a generic and scalable
approach, this work designs a novel utility measure based
on merely the generalized location metadata and the visual
content, and uses it to quantify the certain coverage level of
a photo subset during photo selection. To ease the presenta-
tion, we summarize some important notations used in the
paper in Table 1.

1. Location annotation is an available function of the built-in camera
applications in both Android and iOS systems. In contrast, the shooting
direction information required in [11], [16], [27] cannot be obtained
with the camera applications.

2. There may be some inaccurate photos in Dwhich capture no PoI.
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4 PHOTO SET UTILITY MODEL

In this section, we design a novel photo set utility model for
certain coverage estimation of the uncertain crowdsensing
photos. There are two factors in the model: a spatial diver-
sity factor and a content influence factor. Spatial diversity
represents the distribution of photos’ locations, which
implicitly measures its photo coverage capability for poten-
tial PoIs. Content influence assesses the correlation between
a photo subset and its complementary set, which reflects the
content representativeness of the photos in one subset for
the other ones. Better content representativeness basically
indicates better performance on view quality.

An example of the spatial distribution and the visual cor-
relations of five photos is illustrated in Fig. 3. As shown,
spatial diversity and content influence are estimated in the
spatial layer and the content layer separately. We will pres-
ent the calculation process for these two factors following
their formulation next.

4.1 The Spatial Diversity Factor

Intuitively, a photo set that captures as many potential PoIs
from different directions is favored by the requester. How-
ever, we cannot directly estimate how many PoIs and
aspects are included as the shooting direction information
is not available. During a photo MCS task, visual descrip-
tions of a range of objects (i.e., PoIs) are collected. We high-
light that for two photos located differently in AT , they
could either be visual summations of two PoIs or views
from different aspects of one PoI. To this end, a photo subset
with photos’ location uniformly distributed shall be a good
selection as photos of the same aspect are avoided and pho-
tos of different PoIs are very likely selected.

Based on the discussion above, we model the spatial diver-
sity of a photo set as the location distribution entropy of the
photos in it. The rationale behind thismodel is that entropy has
the following properties: if the locations of a photo set are close
to a uniform distribution, then the entropy is high; if the distri-
bution is skewed (e.g., all photos located in the same cell), then
the entropy is low. Namely, the entropy is suitable for qualify-
ing the uniform degree of the selected photos’ locations. With-
out loss of generality, we regard AT as a rectangle area and
define the ratio of its height and width as r. Then we propose
to partitionAT intom1¼dðjIj=rÞ1=2e columns horizontally and
m2¼bjIj=nwþ 0:5c rows vertically. In this way, the partition
granularity will be adaptively tuned according to the size of
the target area and the size of the selection. After generating
the grids, we can calculate a photo set’s spatial diversitywith,

FsðIÞ¼�
Xm1�m2

i¼1

ni

jI j � log 2ð
ni

jI jÞ; ni 6¼ 0 (4)

where ni is the number of photos in I taken in the ith grid.
The ni¼0 terms are ignored.

We further use the case in Fig. 3 to illustratively show the
estimation of the spatial diversity factor. Assuming the off-
loading constraint is K¼3 photos, then the area would be
partitioned into 6 grids. Given two possible photo selection
I1¼fp1; p2; p5g and I2¼fp1; p4; p5g, their spatial diversity are
around 0.9 and 1.6 according to Eq. (4). From the aspect of
photo coverage, we will select I2 to enlarge the coverage.
Note that this toy example only shows the preference for
more covered grids, while spatial diversity also cares about
the uniformness when having more photos in each grid.

Finally, we leverage the Campus dataset (see Section 6.1)
to examine the effectiveness of our spatial diversity model.
Four constraint conditions are considered with the offload-
ing constraint ranging from 15 to 21 percent of the size of
the raw collection. For each case, we first enumerate all the
possible selections,3 and calculate their prior spatial diver-
sity using Eq. (4) and posterior photo coverage using
Eq. (1). Then we sort each selection in the ascending order
of its spatial diversity and calculate the mean photo cover-
age of selections under each diversity level. As shown in
Fig. 4, a photo set with large spatial diversity (normalized to
range [0,1]) presents high photo coverage. This validates
our proposal of qualifying photo coverage with location dis-
tribution entropy.

4.2 The Content Influence Factor

The consideration of the spatial diversity factor can provide
a series of selections with proper photo coverage. In order
to guarantee certainty on the coverage, we adopt the content
influence factor to measure the view quality of a photo set.

A crowdsensing photo’s content captures a potential PoI
from an aspect. A pair of useful photos of one PoI are likely
to show high similarity on content due to the intersection of
their covered aspects, while photos with low view quality

TABLE 1
Frequently Used Notations

D a MCS photo collection
I a selected photo set (or photo selection) for offloading
K the maximum number of photos that can be offloaded
FsðAÞ spatial diversity factor of photo set A
FcðAÞ content influence factor of photo set A
UðAÞ the utility (merit) of a photo set

Fig. 3. An example of spatial distribution and content relations of a
crowdsensing photo collection. Each photo captures a unique aspect of
an object in content and is located in a grid in space. As a result, photos
are correlated with each other via their visual similarities (i.e., weight on
the edge) in the content layer and featured with their location tags in the
spatial layer.

3. Enumeration is only used here to analyze the relation between
spatial diversity and photo coverage.
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(i.e., blocked, blurred, or wrong direction) are supposed to
have their own defects, thus distinct on their content. We
denote the visual similarity between a pair of photos as their
content influence on each other. Thus, a photo with high
content influence to the other photos is expected to present
good view quality. In respect of a photo selection, we regard
photos in this selection as ‘candidates’ for offloading and
the rest photos in the raw collection as ‘voters’, and then
denote the comprehensive visual similarity level between
the ‘candidates’ and the ‘voters’ as the content influence of
this selection. In this way, a photo subset with high content
influence is deemed to have good performance on view
quality as it earns many votes from its complementary set
(i.e., the unselected photos believe in the representativeness
of the selection on the visual dimension).

We first calculate the content influence of one photo pi on
a photo set A as,

INFAi ¼
X
pj2A

simðpi; pjÞ; (5)

where simðpi; pjÞ is the visual similarity function and
reflects the visual correlation between two photos. Many
well-studied image feature extraction methods (e.g., SIFT,
SURF, GIST, pHash) can be used to explore the similarities
between images. In this work, we adopt the SURF feature
detection method because it shows good feature matching
performance in most situations (e.g., illumination changes,
affine transformation), and most importantly, it is fast in
image processing [30]. The similarity between two photos
can be calculated as,

simðpi; pjÞ¼ MðFi; FjÞ
1
2 � ðjFijþjFjjÞ

; (6)

which equals the number of matched features of the photos
over all the features extracted from them. Wherein, Fi

denotes the SURF features of photo pi. An effective way to
find a correct match for a feature in Fi is to compare the dis-
tance to its second-closest neighbor to that of its closest
neighbor in Fj. If the ratio of the two distances is larger than
a predefined threshold (usually 1.5), the closest neighbor is
considered to be a match. Then we can calculate how many
correct matches exist in Fj for features in Fi [31], denoted as
NðFi; FjÞ. Apparently, having more matches indicates shar-
ing a larger similarity. Since features from two different
photos are not the same, the matching process between two
photos is asymmetric (i.e., NðFi; FjÞ 6¼ NðFi; FjÞ). Hence, we
adopt function MðFi; FjÞ¼ 1

2 � ðNðFi; FjÞþNðFj; FiÞÞ to

facilitate a symmetric similarity measure (i.e., to yield
simðpi; pjÞ¼simðpj; piÞ).

The above influence model is for one photo. For a photo
selection I , its content influence factor is defined as,

FcðIÞ¼
X
pi2I

INFD�Ii ; (7)

where FcðIÞmeasures the visual correlation between subset
I and subset D�I . For the photos left behind in D�I , a
strong correlation means that the selected photo set I can
effectively represent them on content, which in turn indi-
cates the high view quality of I as photos in D�I give mas-
sive support to it. It is straightforward to see that FcðIÞ¼
FcðD�IÞ. Also, given two subsets I1; I 2 � D, we can have
the following properties:

X
pi2I1

INFAi <
X
pi2I2

INFAi if I 1 � I 2 (8)

X
pi2I1[I2

INFAi ¼
X
pi2I1

INFAi þ
X
pi2I2

INFAi �
X
pi2I0

INFAi

if I1 \ I 2¼I0:
(9)

We can use photo subset fp1; p2g in the content layer of
Fig. 3 as an example of a selection. The sum of visual similari-
ties between fp1; p2g and its complementary set fp3; p4; p5g is
2.3, which denotes the content influence of fp1; p2g.

Finally, we evaluate the relations between the content
influence factor and the view quality of a photo set. We first
enumerate all the possible photo selections in the consid-
ered conditions and calculate their prior content influence
using Eq. (7) as well as posterior view quality using Eq. (2).
Then the photo selections are sorted in the ascending order
of their content influence. We calculate the mean view qual-
ity for photo selections under each content influence level
for the analysis of the relations. As shown in Fig. 5, a photo
selection with high content influence (normalized) shows
well view quality. Such positive correlation validates our
content influence model as a metric for view quality.4

4.3 Photo Set Utility Measure

In order to qualify the merit of a photo subset in terms of
photo coverage and view quality, we jointly consider the
spatial factor Fs and the content factor Fc in our utility

Fig. 4. The relations between the spatial diversity factor and photo cover-
age for photos from the Campus dataset. K¼x% means that the maxi-
mum number of offloading photos is x% � jDj.

Fig. 5. The relations between the content influence factor and view qual-
ity for photos from the Campus dataset.

4. Note that even the impact of content influence on view quality is
weaker after it passes 0.3, view quality still increases nearly linearly
with it, making it an effective indicator of view quality.
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measure. Compared to a selection with fewer photos, more
photos (within the offloading constraints) can have no
doubt provide more information about the target. However,
Fc, as a view quality metric, is not monotone, so merely
adopting Fs and Fc for utility estimation may lead to a small
selection. Hence, the set size jI j is also introduced in the
utility to indicate the preference for a large selection.5

Finally, we formulate the utility of a photo selection as,

UðIÞ¼ð1�aÞ � kFsðIÞkþa � kFcðIÞkþjIj; (10)

where factors Fs and Fc are normalized to the range of
[0,1] and a is the weight characterizing and balancing
the importance of photo coverage and view quality. We
will evaluate the impact of weight a on the performance
of photo selection in Section. 6.2. As an alternative for
the certain coverage model in Eq. (3), UðIÞ shares a simi-
lar form as V ðIÞ with the spatial and visual characteris-
tics considered.

5 THE PHOTO SELECTION APPROACH

The photo selection objective is to maximize the photo cov-
erage and view quality of the offloading photos for the
requester. Considering the difficulty in directly estimating
photos’ certain coverage, our photo selection approach alter-
natively looks for the best utility photo subset. As shown in
Fig. 6, our approach consists of two schemes according to
whether the PoI number information is available.

The basic photo selection scheme takes the crowdsensing
photos as inputs and jointly exploits the spatial and content
characteristics of a photo subset to facilitate a utility mea-
sure for the contribution of the subset. Then the subset with
the maximum utility while satisfying the offloading con-
straint is selected and delivered to the requester. In some
scenarios, the number of PoIs (i.e., npoi) is provided by the
requester or is known as common knowledge. For example,
a requester is likely to specify the names of the PoIs in one
target area where s/he has been to while don’t have a visual
record. These information will help to collect useful photos
as the requests are further clarified. The PoI number-aware
photo selection scheme uses the PoI number information to
group photos into clusters first. By regarding each cluster as
a summation of some PoIs, PAPS then performs BPS on the
clusters to select photos for each PoI independently.

5.1 BPS: Basic Photo Selection

BPS attempts to find the photo subset with the best utility
from the scratch (i.e., only photos and their locations are
provided). Based on the utility model and the constraint,
the selection process of BPS can be formulated into the fol-
lowing problem.

Definition 4 (Utility-Based Photo Selection Problem).
Given a crowdsensing photo set D and an offloading budget K,
the selection problem finds a subset I � D so that utility of I
in Eq. (10) is maximized under constraint jI j � K.

Theorem 1. The utility-based photo selection problem is NP-hard.

Proof. We prove that the utility-based photo selection prob-
lem is NP-hard by reducing the well-known maximum cut
problem with given sizes of parts (MCGS for short) [32] to a
special case of the problem (i.e., a¼1). This case finds a
subset I (jI j � K) that maximizes kFcðIÞkþjIj. Since
kFcðIÞk � 1, the special case can be further transformed
into finding a subset I (jI j¼K) that maximizes kFcðIÞk.

An instance of the MCGS problem involves a graph
G¼ðV; EÞ, in which each edge ðu; vÞ has a nonnegative
weight vuv. Given a positive integer q � jVj=2, the objec-
tive of such a problem is to find a cut ðS;V�SÞ that can
maximize

P
u2S;v2V�S;ðu;vÞ2E vuv with jSj¼q.

Our reduction considers V as D, where each vertex of
G becomes a photo in D accordingly. We denote the
visual similarity level between each pair of photos as the
weight of each edge in E (0 if no edge exists between two
vertex). Then we consider S as I and set K¼q. In this
way, finding the maximum cut ðS;V�SÞ with jSj¼q is
equivalent to selecting K photos from D so that the con-
tent influence of the selection I to the rest photos is maxi-
mized. Since this reduction process can be done in
polynomial time, we prove that maximizing kFcðIÞkþjIj
under the constraint is NP-hard.

Finally, if we assume that the original problem can be
solved in polynomial time, then we can also find a poly-
nomial solution for the special case by setting a¼1. This
contradicts the fact that the maximization problem of the
special case is NP-hard. Therefore, our assumption is
wrong, and we conclude that the utility-based photo
selection problem is NP-hard. tu
Designing algorithms to find the best offloading photo

subset I is challenging since it belongs to NP-hard. To
relieve this pitfall, the BPS scheme leverages the greedy
strategy to obtain an approximate solution. The greedy-
based algorithm BasicSelection is listed in Algorithm 1.

The basic idea of BasicSelection is to iteratively find
the best photo which yields the maximum increase on
the utility (ties are broken arbitrary) and add it into the
selection (Lines 9-10). In each iteration, the spatial diver-
sity gain Di

Fs
of each photo pi and its content influence to

the other photos are calculated in order to estimate its
utility gain (Lines 5-8). The algorithm stops when the
number constraint is active or all photos have been
selected (Line 12).

We use the example in Fig. 3 to explain the algorithm.
Here, we suppose that only two photos can be selected and
delivered. Initially, the spatial gain for each photo is the

Fig. 6. The framework of our photo selection approach.

5. The cardinality term ensures the size of the selection to reach the
upper limitation, while the spatial and content factors are for picking
out the subset with well certain coverage from all the possible photo
combinations with such a size.
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same, so BasicSelection looks for the most influential photo.
The sum of similarities between photo p1 and photos in
D�p1 (the complementary set of p1) is the largest among all
combinations of ðpi;D�piÞ (i.e., 2.3), so p1 is selected in the
first round. Next, p3 is picked out in the second round as
DUðp3Þ is the largest among the utilities of photos in subset
D�p1. Thus, BasicSelection provides a solution I1¼fp1; p3g,
which has a spatial diversity of 0.5 and a content influence
of 3. Note that this is not the optimal solution, in which sub-
set I 2¼fp2; p4g is selected. I 2 yields the same spatial diver-
sity as I 1 while presenting a bigger content influence of 3.5
than that of I1. The approximation ratio of BasicSelection is
analyzed as follows.

Algorithm 1. BasicSelectionðD; K; aÞ
1 begin
2 I  ;;
3 Compute simðpi; pjÞ for each photo pair in D;
4 repeat
5 for each photo pi in D�I do
6 Di

Fs
 FsðI [ fpigÞ�FsðIÞ;

7 INF
D�I�pi
i  P

pj2D�I�pi simðpi; pjÞ;
8 DUðpiÞ  ð1�aÞ � kDi

Fs
kþa � kINF

D�I�pi
i k;

9 end
10 p̂ argmaxpi

fDUðpiÞg;
11 I  I [ fp̂g;
12 until jI j > K or D�I¼;
13 return I ;
14 end

Lemma 1. The utility of a photo set given by Eq. (10) is mono-
tone and submodular.

Proof. We first define the monotonicity and submodularity
properties of set function as follows. tu

Definition 5 (Monotonicity). A function f : 2V ! R is
monotone if for every A � B � V, fðAÞ � fðBÞ.

Definition 6 (Submodularity). A function f : 2V ! R is
submodular if for every A; B � V, fðAÞþfðBÞ � fðA [ BÞ
þfðA \ BÞ.
Since the linear combination of monotone submodular

functions is still monotone and submodular, we prove the
monotonicity and submodularity of the two terms FsðIÞ
and FcðIÞþjIj in the utility function separately. For simplic-
ity, we ignore the weights and normalization function in
Eq. (10) during the proof.

Remember that we denote FsðIÞ as the one dimension
entropy of the distributed photo locations. Since the Shan-
non entropy is known to be monotone submodular [33], we
claim that FsðIÞ is a monotone submodular function.

For the term FcðIÞþjIj, we first prove its monotonicity.
Given two subsets I1, I 2 (I1 � I2) of D (we assume
9I0 � D; I 1 [ I0¼I 2), we can have,

FcðI2ÞþjI 2j�ðFcðI1ÞþjI1jÞ
¼FcðI2Þ�FcðI1ÞþjI 0j
� 0;

(11)

where jI 0j � 1 and FcðAÞ � 1 is a normalized value. Hence,
function FcðIÞþjIj is monotone.

Next, we prove the submodularity. Given two subsets
I1; I 2 � I and I0¼I1 \ I 2, we first have,

L¼FcðI1ÞþjI 1jþFcðI2ÞþjI2j
¼

X
pi2I1

INF
D�I1
i þjI1jþ

X
pi2I2

INF
D�I2
i þjI2j: (12)

Then we substitute the term with the intersection and
union of the two subsets and give the following proof,

R¼FcðI1 [ I 2ÞþjI 1 [ I2jþFcðI1 \ I2ÞþjI1 \ I 2j
¼

X
pi2I1

INF
D�ðI1[I2Þ
i þ

X
pi2I2

INF
D�ðI1[I2Þ
i

�
X
pi2I0

INF
D�ðI1[I2Þ
i þ

X
pi2I0

INFD�I
0

i þjI 1jþjI2j�jI 0jþjI 0j

¼
X
pi2I1

INF
D�I1
i �

X
pi2I1

INF
I2�I0
i þ

X
pi2I2

INF
D�I2
i

�
X
pi2I2

INF
I1�I0
i þ

X
pi2I0

INF
ðI1[I2Þ�I0
i þjI 1jþjI 2j

¼L�
X

pi2I2�I0
INF

I1
i �

X
pi2I1�I0

INF
I2
i þ

X
pi2ðI1[I2Þ�I0

INF I
0

i

¼Lþ
X

pi2I1�I0
INF I

0
i �

X
pi2I1�I0

INF
I2
i þ

X
pi2I2�I0

INF I
0

i

�
X

pi2I2�I0
INF

I1
i < L;

(13)
where the two inequations are deduced from the photo sets’
relations mentioned in Eq. (8) and Eq. (9). Hence, function
FcðIÞþjIj is also submodular. Since both two terms in UðIÞ
are monotone and submodular, we prove the Lemma.

Theorem 2. The BasicSelection algorithm in BPS provides an
approximation ratio of ð1�1=eÞ, where e is the base of the natu-
ral logarithm.

Proof. According to [34], the greedy algorithm can provides
a ð1�1=eÞ approximation ratio for the optimization prob-
lem of a monotone submodular function. We have proved
in Lemma 1 that the utility function in Eq. (10) is monotone
and submodular. tu
Discussion on BPS. One may argue that we can simply fil-

ter those photos with low visual similarities to the others
and then select photos merely based on spatial diversity.
However, a photo showing weak visual correlations with
the others may be the only one piece of description for a PoI
or a description from a unique aspect. Hence, in order to
obtain a proper photo selection in terms of certain coverage,
the content factor must be considered jointly with the spa-
tial factor.

5.2 PAPS: PoI Number-Aware Photo Selection

We refer to BPS when only limited information is available
for selection. In cases where the number of PoIs (i.e., npoi) is
known, PAPS is believed to generate photo selection with
better certain coverage than BPS by grouping photos into
clusters before performing BPS on each cluster.

By introducing a photo clustering stage, PAPS tries to
group photos capturing the same PoI into one cluster. We
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point out that mean-based clustering techniques (e.g., k-
means), which are widely used when the number of clusters
is given, are not adequate for photo clustering as calculating
the mean of several visual features is meaningless. Also,
this category of algorithms is extremely sensitive to the ini-
tial configuration [25]. Fortunately, the similarity between
two photos can be easily measured from the spatial dimen-
sion and the content (or visual) dimension. As stated in [35],
if we cannot attain more information than similarities
between data points, a proper way of representing the data
is in form of the similarity graph. By representing photos in
a similarity graph, the photo clustering process is then refor-
mulated into a graph partition problem, which can be well
handled by spectral clustering.

In order to construct a graph for spectral clustering, we
first formally define the graph similarity measure used in
PAPS.6 Generally, photos of the same PoI usually present
smaller geographical distances and higher matching levels
on visual than photos of different PoIs. Hence, we novelly
combine spatial similarity and visual similarity together
and formulate the graph similarity between photos pi and
pj (i 6¼ j) as,

vij¼b � ksimðpi; pjÞkþð1� bÞ � keð�
disðpi;pjÞ

dlim
Þk; (14)

where simðpi; pjÞ is the visual similarity in Eq. (6) and the
second term denotes spatial similarity. Parameter b is the
weight that balances these two similarity factors. In the sec-
ond term, disðpi; pjÞ is the euclidean distance between photo
pi and pj and parameter dlim¼ 1

jDj2�jDj �
P

i6¼j disðpi; pjÞ is

introduced in order to narrow down the range of spatial

similarity. Note that if we merely leverage the geographical

relations for graph similarity (i.e., b¼0), we would fail to

distinguish neighboring photos of different PoIs. On the

other hand, if we only consider the visual correlations (i.e.,
b¼1), photos for different aspects of one PoI may be

grouped into different clusters.
Based on the graph similarity model, the photo selection

process of PAPS is designed as Algorithm 2. As shown, the
graph similarity between each pair of photos is first calcu-
lated (Line 2). Then we construct a graph in which each
node represents a photo and each edge is tagged with a
weight indicating the degree of graph similarity between
these two photos (Line 3). Given this fully connected graph,
normalized spectral clustering in [36] can be used to parti-
tion the nodes into clusters based on the npoi smallest eigen-
vectors of the graph’s Laplacian matrix (Line 4). This graph
similarity-based clustering stage is named gs-sym (postfix
‘sym’ means that a symmetric Laplacian matrix is used).
Next, we select photos from each cluster proportional to the
size of the cluster based on BPS (Lines 5-8). Finally, the
selected photos from different clusters are combined into
one set and returned to the requester (Line 9).

Discussion on PAPS. The locations of the PoIs in a target
area are not supposed to be known in prior as it is hard and
not flexible for a requester to tag the locations. In fact, the
PoIs in photo crowdsensing scenarios can be objects with

irregular shapes and relatively huge sizes, making it infeasi-
ble to describe their accurate locations.

Algorithm 2. AdvancedSelectionðD; K; a; b; npoiÞ
1 begin
2 Compute vij between photo pi and pj (i 6¼ j) using Eq. (14);
3 Construct similarity graph G based on D and fvijg;
4 fClsig  SpectralClusteringðG;npoiÞ;
5 for each cluster Clsi do
6 Ki  bK � ðjClsij=jDjÞ þ 0:5c;
7 I i  BasicSelectionðClsi; Ki; aÞ;
8 end
9 I  S npoi

i¼1 I i;
10 return I ;
11 end

Two different similarity measures are designed in
Eqs. (6) and (14). This is because content influence models
peer-to-community similarity which calculates the sum of
one photo’s similarities to the others. Visual similarities
between one photo and the other photos are additive, while
adding up the spatial similarities is meaningless (we will
not select a photo just because it is adjacent to the other pho-
tos). Therefore, we use merely visual similarity when for-
mulating content influence. On the other hand, similarity
graph considers peer-to-peer similarity, so both visual and
spatial similarity can be helpful in constructing and process-
ing this graph.

6 EXPERIMENTS

This section evaluates the performance of our approach to
crowdsensing photo selection. First, we examine the effec-
tiveness of our photo set utility model by varying the
weight a. Second, we compare the performance of our BPS
scheme with that of the clustering-based and the random
photo selection scheme. Finally, we evaluate the photo clus-
tering performance and the photo selection performance of
our PAPS scheme.

6.1 Experimental Setup

We conduct extensive experiments on three real-world
photo datasets collected by ourselves.7 During the photog-
raphy, we have two independent researchers take photos
around three target spots. We use the built-in camera
applications of two Huawei Mate 7 phones with Android
6.0 to take photos and stored them in the albums. The
localization service is turned on for the application to auto-
matically record the location where each photo is taken. In
fact, this photo collection process can be considered as the
participants-to-server data collection phase of mobile
crowdsensing tasks.

We present the statistics of these three photo datasets in
Table 2 and show the distribution of PoI and photos in
Fig. 7. The Campus dataset consists of photos collected
from the campus of PolyU. As shown in Fig. 7a, totally 57

6. We use graph similarity in order to distinguish it with the visual
similarity in Eq. (6). We will explain why we introduce two similarity
measures in the discussion.

7. As the first work devoted to photo selection for certain coverage,
there lack photo datasets with location tags and view quality labels in
MCS. Manually collecting photos is labor intensive, which limits the
scale of our datasets.
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photos about 3 PoIs are taken in this target area and 7 of
them are of low quality. The TPark dataset collects a group
of 40 photos in a technology park at NUDT, where 4 PoIs
are captured and 3 photos are with low quality as illustrated
in Fig. 15b. We collect the RPark dataset in a park near the
Xiangjiang River. As we can see from Fig. 7c, 42 photos of 4
PoIs are included and 4 of them are inaccurate. In each data-
set, PoIs are uniformly distributed and captured from sev-
eral aspects with photos at different locations. Totally 21,
23, and 16 PoI aspects are captured in datasets Campus,
TPark, and RPark, respectively. During photo selection, all
the collected photos were resized to 240	 180 (preserving
the aspect ratios of the raw photos) in order to accelerate the
process of visual feature extraction.

We use photo coverage in Eq. (1), view quality in Eq. (2),
and certain coverage in Eq. (3) as the performance metrics
during our evaluation. Notice that merely having advantages
in either photo coverage or view quality is not good enough
for the requester. A proper photo selection should yield good
overall performance (i.e., certain coverage). We asked stu-
dents who are familiar with the sensing areas to exploit the
ground truth knowledge of the photos.8 Specifically, they are
first asked to determine the PoI and the aspect that each photo
captures to attain Sipoi and Sijasp in Eq. (1). Then they label the

accuracy of each photo by verifying whether its view is
blocked, blurred, or wrongly recorded, based on which we
can calculate nIin (Eq. (2)) for each selection I .

We implement our photo selection approach and the base-
lines using Matlab. Our experiments are conducted on a
workstationwith 4 GBmemory and a 2.94 GHz Intel(R) CPU.

6.2 Evaluation on the Utility Model

We first evaluate the effectiveness of our photo set utility
model with varied weight a on the three datasets. a is used to
reconcile spatial diversity (i.e., a¼0) and content influence
(i.e., a¼1) in order to facilitate the utility estimation. Specifi-
cally, we vary a from 0 to 1 and test the overall performance9

of the selected photo set that the BasicSelection algorithm gen-
erates. The test is performed under several different budgets
(i.e., the percentages of photos allowed for offloading).

As shown in Fig. 8, for every dataset, depending only on
either spatial diversity (a¼0) or content influence (a¼1) usu-
ally cannot provide satisfactory result. We notice that there
are some special cases where a¼1 can also yield the best per-
formance (e.g., K¼12% in Campus). This happens when the
representative photos selected based on content influence

cover the PoIs and aspects evenly, namely, the locations of the
K-most influential photos happen to be one of the combina-
tions that can yield the biggest distribution entropy. We sup-
pose that the selection process for datasets from relatively
small target area (e.g., the Campus dataset) tends to have such
results as photos’ locations would be easily distributed into
different grids, but this is definitely not the general case. On
the other hand, since the location distribution of photos is not
relevant to their quality, the view quality of the selection can-
not be guaranteed when only using spatial diversity for the
utility. Hence, a¼0 provides the worst overall performance in
almost all the tested situations.

As we can tell from Fig. 8, jointly considering both factors
(0 < a < 1) is generally the best choice to attain a photo
selection with well certain coverage. We also observe that
a¼0:4 provides the best overall performance under different
budgets in three datasets. Thus, in the rest of the experi-
ments, we set 0.4 as the default value of a. One can adjust a
according to different application requirements (e.g., choos-
ing a bigger value helps to yield better view quality).

6.3 Performance Evaluation for BPS

Next, we evaluate the performance of our BPS scheme by
comparing it with the following two typical photo selection
schemes.

� Clustering-based selection. In this scheme, the raw
photo collection is clustered into groups based on the
pyramid tree (i.e., PTree-based clustering) [12]. Specif-
ically, the first photo of each cluster is set to be the
centroid. For each unclassified photo, we compare it
with every cluster’s centroid by calculating their
visual similarity (Eq. (6)) and spatial distance. The
photo is added to the first cluster that presents a
visual similarity larger than a visual threshold and a
euclidean distance smaller than a spatial threshold.
Otherwise, a new cluster is formed with that photo as
the centroid. Instead of setting up a specific threshold,
we use the mean value of the similarities and the
inter-distances between all pairs of photos in the raw
collection as the visual and spatial threshold, respec-
tively. Based on the clustering results, we select one
photo from each cluster (clusters with larger size first)
until the offloading constraint is active.

Fig. 7. The distribution of PoIs and collected photos on the satellite
images of the target areas in three datasets. Wherein, a rectangle enclo-
ses a PoI and symbol ‘þ’ tags the location of a photo (A photo and the
PoI it captures are painted with the same color.) Inaccurate photos are
not presented as they capture no PoI.

TABLE 2
Statistics of the Photo Datasets

Dataset # PoIs # aspects # photos # inaccurate photos

Campus 3 21 57 7
TPark 4 23 40 3
RPark 4 16 42 4

8. These students are not part of the research team, making them
independent consultants.

9. We have already examined the effectiveness of spatial diversity
on attaining photo coverage in Fig. 4 and content influence on improv-
ing view quality in Fig. 5. Thus, we only test the level of certain cover-
age (i.e., overall performance) that can be achieved with varied a.
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� Random selection. A set of photos with a size equal to
the offloading amount constraint are randomly
selected from the raw photo collection.

For each dataset, we choose 8 constraint levels and exam-
ine the photo coverage and view quality performance of BPS,
clustering-based selection, and random selection on them.

First, from Fig. 9, we can see that an informative photo
subset can be selected by BPS. As expected, the performance
on posterior photo coverage of BPS’s photo selection keeps
increasing linearly with the budget as more PoIs and more
aspects are included. We also observe an increasing photo
coverage for the other two schemes, but their performance
is generally worse than that of BPS. Specifically, in terms of
photo coverage, BPS outperforms clustering-based selection
by an average of 37, 39, and 23 percent and outperforms
random selection by an average of 60, 26, and 16 percent for
the three datasets, respectively. Compared with the results
in Fig. 14a and 14b, the performance advantages of BPS in
RPark are less obvious (Fig. 14c). This is because that RPark
has less PoI aspects than the other two datasets, making it
easily for the two baselines to cover more aspects with the
same budget.

As shown in Fig. 10, BPS can formally avoid the ingredients
with low viewquality during the selection process in the three
scenarios, while the other two schemes have no guarantee on

this aspect. The average performance improvement of our
scheme on view quality are 12, 15, and 29 percent for cluster-
ing-based selection, and 10, 6, and 18 percent for random
selection.We also observe that the viewquality of BPS’s photo
selection will degrade slightly when the budget exceeds a
certain level in Campus and TPark. This is because that some
inaccurate photoswill be unfortunatelymixed in during selec-
tion as the proportion of useless ingredients in the unselected
photos increases. Though, BPS can still yield a better view
quality than the two baselines.

We give an example to illustrate the selected photos of
the three schemes in Fig. 11. In this example, BPS provides a
selection which covers 3 PoIs, while the other two schemes
have only 2 PoIs covered and the selections contain photos
with low quality. Overall, BPS can extract more valuable
photos from the collection than the other two schemes
under different budget constraints. We owe the perfor-
mance advantages of BPS to the jointly consideration of spa-
tial and content factor during selection. In contrast,
clustering-based selection fails to group photos for different
aspects of each PoI and ignores the view quality expectation
of the requester. Meanwhile, we notice that the performance
of the random strategy is not steady, but its view quality
performance is usually better than the clustering scheme.
The reason is that the clustering scheme may accidently

Fig. 9. Evaluation of the photo coverage performance on three datasets.

Fig. 8. Impact of the weight a on the overall performance of the photo selection.

Fig. 10. Evaluation of the view quality performance on three datasets.
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classify inaccurate photos into one single cluster, which
gives the inaccurate ones a relatively high probability of
being selected.

6.4 Performance Evaluation for PAPS

In this section, we evaluate our PAPS scheme on crowdsens-
ing photo selection by investigating its photo clustering (i.e.,
gs-sym) performance, and the selection’s performance on
photo coverage and view quality.

We first evaluate the effectiveness of the graph similarity
model (i.e., Eq. (14)) for photo clustering with the weight b
varying from 0 to 1. b is introduced in the graph similarity
in order to facilitate an integrated measure based on visual
and spatial similarity. As shown in Fig. 12, merely adopting
visual similarity (i.e., b¼1) for clustering, as proposed
in [37], yields the worst accuracy in all the three datasets.
Using spatial similarity (i.e., b¼0) for clustering presents
better accuracy than using visual similarity as crowdsensing
photos tend to be taken around their corresponding PoIs
that uniformly distributed in the area. However, as we can
see from Fig. 7, the geographic boundary for the locations of
each PoI’s photos is non-convex, namely, photos of different
PoIs may geographically mix with each other in some
regions. By introducing visual similarity, we can distinguish
photos of different PoIs that have small inter-distance. This
explains the clustering accuracy advantages of graph

similarity (0 < b < 1) in terms of simply based on visual
or spatial similarity during clustering in Fig. 12. Particu-
larly, we point out that the performance differences
between using graph similarity and the other two metrics
are more significantly in TPark and RPark than in Campus.
This is because more photos are geographically mixed in
TPark and RPark. We set b¼0:5 in the rest experiments as
graph similarity with b¼0:5 provides a high clustering accu-
racy in the tests.

In order to evaluate the performance of gs-sym, we com-
pare it with the following two clustering methods. 1)
k-means performs traditional k-means clustering on the
locations of photos (considering a photo’s GPS location as
its two-dimensional feature). 2) gs-rm (postfix ‘rm’ repre-
sents random walk) also leverages our graph similarity
model, but uses the spectral clustering technique proposed
in [38]. gs-sym is not compared with the PTree-based clus-
tering because the latter is not a fixed-width method (gener-
ating 21, 16, and 18 clusters during the tests on Campus,
TPark, and RPark) and its clustering accuracy cannot be
estimated. As shown in Fig. 13, gs-sym presents the best
accuracy among the three methods for all three datasets.
Particularly, it outperforms the k-means baseline by 20 per-
cent on clustering accuracy in Campus. The facts that gs-
sym outperforms gs-rm in all the scenarios evaluates the
use of a symmetric Laplacian matrix in spectral clustering.

Fig. 11. Examples of photos selected by BPS, clustering-based selection, and random selection on the Campus dataset with offloading constraint
K¼12%. The first two images in the second line and the 5th image in the third line are with blocked views. These are the results of one round of selec-
tion. We calculate the average performance of the selected photos from ten rounds of selection during our evaluation.

Fig. 12. The impact of weight b on the clustering accuracy of gs-sym. Fig. 13. The accuracy performance of k-means, gs-rm, and gs-sym.
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We evaluate the photo selection performance of PAPS by
comparing it with BPS. For the performance on photo cover-
age, evaluation results is presented in Fig. 14. As expected,
PAPS can provide better photo coverage than BPS. The
advantage owes to the photo clustering stage that trans-
forms the selection process into per-PoI granularity, in
which way more PoI aspects can be selected than simply
selecting from the scratch (i.e., BPS). Specifically, PAPS out-
performs BPS on photo coverage by an average of 38, 9.5,
and 87 percent for Campus, TPark, and RPark, respectively.
On the other hand, since PAPS and BPS both adopts the
content influence model for view quality assurance, the per-
formance of these two schemes on view quality should be
of no obvious difference. As illustrated in Fig. 15, the photo
selections of PAPS and BPS yield almost the same view
quality (the largest improvement of PAPS from BPS is
6.8 percent in Campus).

Finally, we analyze the execution cost of our approach.
The execution process can be roughly divided into a photo
preprocessing stage (i.e., SURF feature extraction and visual
similarities calculation) and a photo selection stage. In our
tests, the preprocessing times for the collected photos are
59s, 27s, and 25s for Campus, TPark, and RPark, respec-
tively. Meanwhile, the time cost of photo selection is quite
small, only taking an average of 0:005s and 0:04s for BPS
and PAPS based on the three datasets. Note that PAPS
requires more execution time than BPS due to the additional
clustering stage. We emphasize that photo preprocessing
can be performed during photo collection to reduce this
part of time cost and it only has to be performed once for
each collected photo.

7 LIMITATIONS AND IMPLICATIONS

Limitations. The proposed schemes in this paper are for
server-to-requester photo selection, so it cannot save the
uploading cost of the participants. One can reduce the

uploading cost by requiring the participants to extract the
SURF features locally and upload the features to the MCS
server for selection. Then only those photos corresponding
to the selected features need to be uploaded and transmitted
to the requester. However, such an interaction process intro-
duces additional latency and requires more participants
involvement, which is against our intention to encourage
user participation.

We also state that the effectiveness of the proposed
schemes could be destroyed by replication threats, in which
the same photo is reported several times. Such behaviors
will introduce useless computation and will mislead the
schemes to select the replicated photos even they are of low
quality. One possible solution for such threats is to set up
an empirical threshold to filter out photos that present
abnormal similarity to each other.

Implications.Wefind it hard to estimate the quality of a piece
of data without any references or criteria, especially when the
data is with uncertain properties. However, our efforts in this
work indicate that it is possible to measure the merit of a set of
uncertain data by exploiting the statistical characteristics of the
set and the relations among the data points. We consider this
as an application of the crowdwisdom.

8 CONCLUSION

In the photo MCS applications, plenty of crowdsensing
photos aggregate to the server, but only a representative
photo subset are expected to be delivered to the requester
for an online view. In this paper, we first study the server-
to-requester photo selection problem and analyze the cer-
tain coverage challenges in terms of crowdsensing photo
uncertainty. We design a utility measure, which integrates
a spatial factor and a content factor, to quantify the contri-
bution of a photo set on certain coverage. Then we propose
the BPS scheme that leverages a greedy-based strategy to
select the photo set with the approximately maximum

Fig. 14. Comparison on the photo coverage performance of PPAS and BPS.

Fig. 15. Comparison on the view quality performance of PPAS and BPS.
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utility. An advanced selection scheme (i.e., PAPS) is also
proposed by introducing a novel photo clustering stage
before performing BPS under PoI number-aware situations.
With the help of BPS and PAPS, we can formally bridge
the gap between the uncertain crowdsensing photos and
the certain coverage expectation of a target area. We con-
duct extensive experiments on three real-world photo data-
sets. Experimental results demonstrate the effectiveness of
our proposal and show the performance advantages of
both BPS and PAPS over the clustering-based scheme and
the random selection scheme. In the future, we are inter-
ested in studying the detection of anomalies (e.g., riots)
with a selection of passive crowdsensing photos collected
through opportunistic sensing.
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