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Detection and Characterization of Network
Anomalies in Large-Scale RTT Time Series

Bingnan Hou, Tongqing Zhou, Zhiping Cai, Member, IEEE, Fang Liu

Abstract—Network anomalies, such as wide-area congestion
or packet loss, could seriously degrade network performance.
Detecting and characterizing network anomalies quickly and
accurately on end-to-end paths are critical for ensuring network
performance. In this work, an unsurprised two-step method for
detection and characterization of network anomalies is presented.
Our two-step method first detects anomaly from large-scale
RTT time series using change-point detection algorithm. Then
we characterize the events, i.e. identifying the nodes and links
that are most responsible for the detected events, by analyzing
the relations between the links with state changes during the
anomalous period. Experiments performed on both simulated
(artificial time series with ground truth) and real-network (RIPE
Atlas traceroute measurements) datasets show that the proposed
method achieves better performance w.r.t. accuracy and efficiency
than existing solutions. what is more, our method provides
valuable insights on anomaly mining in large-scale time series
data.

Index Terms—Network performance measurement, network
anomaly detection, time series analysis.

I. INTRODUCTION

The possible impact of a network anomaly includes dis-
ruption in network connectivity and performance degradation
which dissatisfies network users and even causes huge finan-
cial losses [1]. It is very significant to develop a method to
detect, locate, and assess the impact of network anomalies
accurately and effectively when they occur. Many anomaly
detection techniques [1], [2], [3] utilize the round-trip time
(RTT) data, which can represent network performance timely,
to detect the anomalous events. However, these mthods can-
not exactly distinguish whether RTT changes are related to
anomalous network events or other reasons which also cause
RTT fluctuations such as path changes, normal congestions and
routing changes. This makes it difficult to pinpoint anomalous
events when normal RTT fluctuations cannot be excluded. In
addition, most prior works only carry out anomaly detection on
a single link or multiple links and do not study the correlation
among the abnormal links, which results in the lack of ability
to assess the impact of events and locate the root fault point.

In this paper, we propose an unsupervised method to focus
on analyzing the amount of RTT changes of the whole
monitored network. When a network failure event occurs, a
large number of links are affected and many RTT related
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to these links will be changed. We believe that there is a
network anomaly when the number of RTT changes in the
network (AS) exceeds a normal reference. What is more, links’
RTT time series should share some common characteristics
when they pass over the same router or affected by the same
accident [1]. Meanwhile, we characterize the events, which
finds the the entities (nodes/links) that are most responsible
for those changes, by analyzing the hidden relation in links.
To be more specific, our method first utilizes a shape-based
metric to calculate the distance between links’ RTT time series
with state change during the anomaly period. In this way,
the hidden relation between links is included in the distance
matrix. In order to facilitate the visualization of event impact
assessment, we reduce the dimension of the distance matrix
to a two-dimensional space. Then we calculate the highest
density region through the two-dimensional kernel density
estimation. Obviously, the links’ RTT time series in this region
has the most similar shape, i.e., the node in this region are
affected by the same event.

Prior works have shown that both supervised and unsuper-
vised learning techniques are quite used in event detection
and characterization in different research communities [4].
The limitations of supervised methods are that they require
labeled data which is not always available for real-world data,
and cannot detect novel events that have never been observed
previously [5]. Thus, we utilize an unsupervised method which
does not require labeled data, it detects suspicious events if
the behavior deviates from the normal behavior in time. Mean-
while, our proposed method does not assume any knowledge
about the shape, amplitudes, or size of the time series which
shows its high flexibility.

Different from earlier works on network anomaly detection,
we experiment with both simulated (artificial time series with
ground truth) as well as real-network (RIPE Atlas built-in
traceroute measurements [6] without ground truth) datasets
to spot events and pinpoint anomalous agents. The artificial
time series data has been carefully simulated with the goal
of testing the method in controlled environments. A known
number of different structures are inserted in noise of various
levels and characteristics. We construct twice change-point
detection and shape-based similarity measure on these time
series. Our proposed approach is able to successfully unearth
these artificial events and the event-related individuals that
initiated the events with high accuracy. Quantitative evaluation
based on ground truth shows that our method can greatly
reduce the alarm caused by data noise and accurately locate the
event-related links. We also use RIPE Atlas built-in traceroute
measurements (May 2015 - June 2015 and November 2015 -
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December 2015) where we construct RTT time series analysis
of adjacent hops. Our experiments successfully reveal several
big events during the time period of the data, demonstrating
that the proposed methods can detect real disruptions and
provide valuable insights on anomaly mining in large-scale
time series data.

The key contributions of this paper are summarized as
follows:

1) We present a network anomaly detection method which
utilizes change-point detection algorithm. Compared
with the outlier detection based method, our proposed
method can greatly reduce the irrelevant alarms caused
by RTT fluctuation.

2) We propose a novel unsupervised characterization
method which takes advantage of a shape-based simi-
larity measure to analysis the hidden relations between
links. Combined with the multidimensional scaling al-
gorithm, we visualized the relations between links, and
then distinguish the event-related links from the irrele-
vant links.

3) Experimental results show that the proposed method
achieves better performance w.r.t. accuracy and effi-
ciency compared with existing solutions.

The remainder of the paper is organized as follows. Sec. II
discusses some related works on network anomaly detection
and characterization. Sec. III describes the design of our
method and the algorithm details of anomaly detection and
characterization. Sec. IV and Sec. V give our experimental
setup and results. We conclude our paper in Sec. VI.

II. RELATED WORK

It is well known that path changes and congestion are the
main causes of RTT fluctuations or state changes [7], [8].
In this paper, we focus on the RTT state changes caused by
network events which lead to network congestion. As to the
noise nature of RTT time series, not all the RTT changes
are network event-related. Thus, only monitoring the state of
each single link cannot determine whether there is network
anomaly. To mine anomalies in large-scale of performance
time series data, several methods have been studied.

PCA-based anomaly detection methods, such as [9], [10],
[11], [12] have been proposed by researchers to detect and
diagnose anomalies on passive measurements. A PCA sub-
space projection methodology is proposed in [9], [13] where
the authors apply PCA on network traffic data and separate of
the high-dimensional space occupied by the data into disjoint
subspaces corresponding to normal and anomalous network
conditions. Hyndman et al. [14] uses PCA to isolate and
diagnose the locations of the correlated anomalies in large-
scale time series data. However, the PCA-based anomaly
detection method only performs well on relatively smooth time
series, as for the time series with high normal fluctuations, e.g.,
RTT time series, it cannot effectively reduce the false alarm
rate.

Another common anomaly detection schema utilizes mul-
tichannel singular spectrum analysis (MSSA) algorithm for
simultaneously denoising and reconstructing time series data

[15], [16]. The difference between the predicted value and the
real value is then used to determine whether there is anomaly.
However, the MSSA algorithm has high computational com-
plexity and is not suitable for the large-scale of time series
data.

In this paper, an unsupervised change-point detection
method is used to study the correlation of link state changes
to eliminate the influence of RTT fluctuation. Prior works
on change-point detection are in various fields [17], [18].
Rimondini et al. [8] first applied change detection to network
measurement analysis. Their study adjusted the detection
sensitivity to make the detected changes most relevant to the
BGP changes of the target prefix. However, they ignored the
changes of RTT caused by network anomalies. In addition, this
study requires some kinds of tuning for each individual RTT
time series, so it is difficult to apply this method to large-scale
RTT data.

The proposed method uses twice of change-point detection
method on large-scale RTT time series data which achieves
better performance on accuracy compared to PCA-based and
MSSA-based anomaly detection methods. Besides, its time
overhead is acceptable.

III. METHOD

In this section, we first present a conceptual overview of the
system design. And then we describe how to detect network
event using a robust change detection method. Finally, we
introduce the characterization method to identify the event-
related links.

A. System overview

Fig. 1 illustrates the work-flow of our proposed method. Our
method first extracts RTT data from the monitored network
probes at equal time interval to form the RTT time series.
Then we evaluate the performance of the entire monitored
network, that is, we perceive whether there are network
anomalies through the twice of change detection method. The
first change detection method detects each RTT time series
and records the number of change-points by time, which
forms a time series of change-points of the whole network.
The second change detection method detects the change-point
time series and marks the time of abnormal points. On event
characterization, we first measure the shape-based distance
(SBD) between the RTT time series marked with change-point
during the network anomaly period. The reason for the shape-
based distance measure is that we observed that the jitter of
links, which is related to events, is similar during the event.
Then we use multidimensional scaling (MDS) to project the
distance matrix into two-dimensional space. Finally, we locate
the highest density region (i.e., the red zone shown in Fig. 1)
for characterization of the event.

B. Anomaly detection

Acquisition of RTT time series between network probes
is the fundamental work for the network anomaly detection.
Generally, our method first collects traceroute data of the
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Fig. 1. Work-flow of our proposed method.

monitored network and calculate RTT time series betweens
nodes in the trace. Then it performs twice of the change-point
detection method:

1) Change detection for RTT time series, that is to detect
state changes of every single links. Utilizing the scheme
in this step, we can get a change-point time series X1:t =
(X1, . . . , Xt) of the whole monitored network, where t
is the length of the time series and Xi = α, (i ∈ [1, t])
if there are change-points in α different links at time
tick i, and is zero otherwise.

2) Change detection for change-point time series, that is
to detect all the changes of X1:t. If X1:t has a change-
point at time j, (j ∈ [1, t]), it indicates that there is an
unusual state change for the whole network at time j.

As with many other time series, end-to-end RTT time
series can have sudden changes in level or volatility, often
caused by delays or congestion. The points of cutting the
time series into fragments with different characteristics is
called change-points. The problem of detecting the most ap-
propriate change points is called change-point detection. More
formally, suppose we have an ordered sequence of data, Y1:t =
(Y1, . . . , Yt). An change-point occurs when there is a time τ ,
τ ∈ [1, t − 1], which makes (Y1, . . . , Yτ ) and (Yτ+1, . . . , Yt)
showing different properties in some ways. Extending this
idea to m ordered changepoints, τ1:m = (τ1, τ2, . . . τm). τi
is the position of ith changepoints. We define τ0 = 0 and
τm+1 = t. Together with the detected m changepoints, they
cut Y1:t into m+ 1 segments, with the ith segment containing
Yτi−1+1:τi . The cost function is calculated for each segment
and the detection method strives to minimize the total cost of

all segments:

m+1∑
i=1

[
C
(
Yτi−1:τi−1

)]
+ βf(m), (1)

where C is a cost function for a segment and βf(m) is
a penalty to against over fitting. One commonly used cost
function is negative maximum log-likelihood of the segment
following a certain distribution [19], [20]:

C (Ys:t) = −max
θ

t∑
i=s

log f (Yi|θ) , (2)

Where f(Y |θ) is a density function with distribution parameter
θ. In this case, the choice of cost function is equivalent to
the choice of distribution type, such as Normal, Exponential,
Gamma and Poisson. When it comes to penalty, f(m) is usu-
ally a function linearly related to the number of changepoints
m:

f(m) = m+ (m+ 1)dim(θ), (3)

where dim(θ) represents the dimension of the θ distribution
(e.g., in the case of Normal distribution, dim(θ) = 2). Com-
mon choices of β are information criteria, such as Akaike’s
Information Criterion (AIC) with β = 2, Schwarz Information
Criterion (SIC, also known as BIC) with

β = log t, (4)

where t indicates the length of the time series. Hannan-Quinn
Information Criterion with

β = 2 log log t. (5)

Modified BIC (MBIC) with

βf(m) = −1

2

[
3f(m) log t+

m+1∑
i=1

log (τi/t− τi−1/t)

]
.

(6)
From Eq. (4) - (6), we have MBIC > BIC > Hannan-Quinn.
Note that the higher the penalty value, the lower the sensitivity
of the detection and the better noise resistance.

As to end-to-end RTT time series change-point detection,
the problem now is how to choose the most appropriate penalty
and cost function/distribution among the wide variety of exist-
ing ones. In this work, we approximate change-point detection
with Normal distribution since it has been reported to perform
well for RTT time series analysis. According to Shao’s work
[21], the detection sensitivity of Normal distribution is higher
than Poisson and Exponential distribution. This is because
the mean and variance of the Normal distribution are inde-
pendently controlled by two parameters, which increases the
chance of finding subtle changes in fitting level or volatility.
And the sensitive approach fits our needs, because we don’t
want to underreport any network exceptions. The remainder
of this section details our anomaly detection method using
change-point detection algorithm.
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Fig. 2. 192 datapoints of an RTT time series. Red vertical lines correspond
to the generated change-points.

1) Change-point detection of RTT time series: An ex-
ample of RTT time series change-point detection is shown
in Fig. 2, state changes are flagged by our method. Fig.
2(a) shows two real adjacent IP addresses (88.254.55.226 −
95.167.95.254) containing 192 RTT values over a period
of 4 days (from November 29th, 2015 to December 2nd,
2015). Red vertical lines shown in Fig. 2(b) correspond to
the generated change-points.

Real RTT time series are highly volatile. The causes of
fluctuations include periodic congestion, path changes, routing
strategy changes and so on. Therefore, network events cannot
be identified through the state monitoring of a single link.
Thus, we take advantage of twice of change-point detection
method to determine network events by considering the cor-
relation between link state changes.

2) Change-point detection of change-point time series:
Traceroute/RTT contains information about hidden relations
of links, such as passing through the same router, belonging
to the same AS or ISP and experiencing the same network
event. When a network failure occurs, it can affect multiple
routes or paths. That is to say, there will be a lot of state
changes of event-related links. Because of the volatility nature
of RTT time series, a part of link state changes when there
is no event in the network. However, the number of link state
changes at the moment of event occurrence will obviously
increase to an abnormal value. In addition, when the network
anomaly is eliminated, the number of link state changes will
drop significantly and fall back to a normal range.

In fact, our second change-point detection uses the central
limit theorem (CLT) for network anomaly detection. Accord-
ing to CLT, regardless of the noise nature of RTT, the change-
points (the number of link’s state changes) of the whole
monitored network will show a Normal distribution as the
number of sample increases. If network anomalous events
occur, the overall number of change-points in the monitored
network will deviate from the Normal distribution, that is, it
will be detected as anomaly.

Utilizing the scheme presented in the previous step (Sec.
III-B1), we can get change-points of the whole monitored

network. Assume the RTT time series of a link is defined as li1:t
and we define a link-state time series xi1:t = (xi1, . . . , x

i
t). The

RTT time series li1:t goes through the change-point detection
method to get xi1:t and xij = 1, (j ∈ [1, t]) if the ith link has
an change-point on time tick j. We add all the link-state time
series, i.e., X1:t =

∑n
i=1 x

i
1:t, to get the change-point time

series of the whole monitored network. Then change-point
detection method is used again to detect the state changes
of the whole network, and if there is a state change, it is
determined that the network is abnormal. The detailed network
anomaly detection algorithm is given in Alg. 1. According
to the N1:t returned by Alg. 1, the start and end time of
network events can be detected relatively accurately according
to the numerical changes of the overall link-state of the whole
network.

Algorithm 1 Network anomaly detection
Require: Links’ RTT time series L = {l11:t, . . . , ln1:t};
Ensure: Change-points of the total link-state time series N1:t;

1: N1:t ← (0, . . . , 0)1×t;
2: X1:t ← (0, . . . , 0)1×t;
3: for each li1:t ∈ L do
4: xi1:t ← Changepoint Detection Procedure(li1:t);
5: X1:t ← X1:t + xi1:t;
6: end for
7: N1:t ← Changepoint Detection Procedure(X1:t);
8: return N1:t;

Efficient computation of anomaly detection method: To
minimize Eq. (1), we utilize the pruned exact linear time
(PELT) algorithm [22] which can result in a time complexity
of O(t), where t indicates the length of the time series.
And this is more computationally efficient compared with
other algorithms due to the use of dynamic programming
and pruning. Thus the time complexity of our anomaly de-
tection method (i.e., twice change-point detection processes)
is O((n+ 1) · t) ≈ O(nt), where n and t indicate the number
of time series and the length of time series, respectively.

C. Anomaly characterization
In the previous section, we described the process of using

change-point detection method to detect network anomalies.
For each time period found to be anomalous for our method,
we also identify the nodes and links which are responsible
for it. On the characterization of events, our proposed method
first extracts the links which has change-point at or near the
anomalous moments and then distinguishes between event-
related and irrelevant links. Considering that the links related
to the same event will have similar violent fluctuations during
the occurrence of event, we first (1) adopt a shape-based
distance (SBD) measure to extract hidden relations between
links. Then we (2) take advantage of multidimensional scaling
(MDS) to project the relations of links into a two-dimensional
space for visualization and observing the relations between
links. Finally, we will (3) use kernel density estimate (KDE)
to obtain a ‘relational densest region’. And this densest region
will be used to locate the anomalous nodes/links and assess
the impact of the event.
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1) Shape-based distance: The shape-based similarity mea-
sure of time series needs to be able to handle the distance
calculation of amplitude and phase distortion. One of the
most commonly used measurement algorithms, Dynamic Time
Warping (DTW) [23], is not suitable for our massive RTT time
series because of its high computational complexity. Besides,
cross-correlation is widely used as similarity measure in signal
processing and KPI anomaly detection due to its high com-
putational efficiency [24], [25]. Based on cross-correlation,
Paparrizos et al. [26] proposed shape-based distance (SBD),
which was applied to time series data and achieved good
results. In this paper, we use SBD to measure the similarity
of our RTT time series in order to distinguish links affected
by events from links which are not related to events.

For two time series Y1:t = (Y1, . . . , Yt) and Z1:t =
(Z1, . . . , Zt), cross-correlation keeps Z1:t unchanged and
slides Y1:t over Z1:t to calculate the inner-product for each
shift s of Y1:t. We denote a shift of a sequence as follows:

Y(s) =


(

|s|︷ ︸︸ ︷
0, . . . , 0, Y1, Y2, . . . , Yt−s), s ≥ 0

(Y1−s, . . . , Yt−1, Yt, 0, . . . , 0︸ ︷︷ ︸
|s|

), s < 0.
(7)

For all possible shifts s ∈ [−t+ 1, t− 1], we can compute the
inner-product CCs(Y1:t, Z1:t) as the similarity between time
series Y1:t and Z1:t with a phase shift s. It is defined as:

CCs(Y1:t, Z1:t) =

{ ∑t−s
i=1 Ys+i · Zi, s ≥ 0∑t+s
i=1 Yi · Zi−s, s < 0.

(8)

The cross-correlation solves for the maximum value of Eq.
(8), representing the similarity between Y1:t and Z1:t at an
optimal phase shift s. Intuitively, at the best offset, similar
patterns in Y1:t and Z1:t align to maximize the inner-product.
Therefore, the cross-correlation measure can overcome the
influence of phase shift and represent the shape similarity
between two time series. In practice, a normalized cross-
correlation (NCC) is widely used to limit the value to [−1, 1]
according to Eq. (9)

NCC(Y1:t, Z1:t) = max
s

(
CCs(Y1:t, Z1:t)

‖Y1:t|2 · ‖Z1:t‖2

)
. (9)

Then we define SBD according to NCC [26]:

SBD(Y1:t, Z1:t) = 1−NCC(Y1:t, Z1:t). (10)

SBD ranges from 0 to 2, where 0 means two time series
have exactly the same shape. A smaller SBD means higher
shape similarity, conversely, a larger SBD means lower shape
similarity. In this work, we use SBD to calculate the distances
of RTT time series between links to measure the similarity of
fluctuations.

2) Multidimensional scaling: Utilizing the schema present
in the previous step, We extract the links with change-point
during the network anomaly period as the suspected event-
related link, and obtain a distance matrix by calculating the
SBD between these links. The SBD matrix describes the
RTTs’ fluctuation similarity between the suspected links. It
is known that the fluctuations of RTT time series of normal

links are random and have different shapes. Nevertheless,
during the event, the RTT fluctuations of the event-related
link tends to have morphological similarity. Thus, we hope to
find a morphologically similar region with the densest links
using the distance matrix. In order to facilitate the subsequent
density calculation and visualization, we first take advantage of
multidimensional scaling (MDS) to project the distance matrix
into two-dimensional space.

MDS is a dimensionality reduction algorithm which seeks
a configuration, usually in a lower dimension, such that
distances between the objects best match those in the original
distance matrix [27]. Suppose there are n suspicious links,
and the SBD of RTT time series between link i and link
j is dij , (i, j ∈ [1, n]). In this work, we use a non-metric
MDS [28] to find a configuration of points representing
the links’ RTT time series in two-dimensional space, where
the approximate distances d̂ij match closely as possible the
original distances dij in some meaningful sense. To do this,
we define d̂ij as a function of the original distance dij , by
d̂ij = f(dij), where f is a monotonic function such that
d̂ij ≤ d̂xy, x, y ∈ [1, n] whenever dij ≤ dxy . For a particular
configuration of points, MDS lets the standardized sum of
squares of the differences between dij and d̂ij , also termed
as STRESS2, be defined as

STRESS2 =

∑
i,j (dij − f(dij))

2∑
i,j d

2
ij

. (11)

The value of STRESS is an indication as to how well the
configuration represents the original distances. The objective
is to find a configuration that has minimum STRESS [29].
Usually, we minimize STRESS over f by a gradient descent
algorithm, for then f can be found by isotonic regression.

3) Kernel density estimation: In previous step, we use
MDS to convert SBD to Euclidean distances in the form
of points in two-dimensional space. Next, we apply two-
dimensional kernel density estimation (KDE) to seek for the
region with the highest density of links’ relations for character-
ization of event-related links and nodes. The two-dimensional
KDE is most straightforward for the normal kernel aligned
with axes. The kernel estimate is

f(x, y) =

∑n
i φ ((x− xi) /bx)φ ((y − yi) /by)

nbxby
, (12)

for a sample of points (x1, y1), . . . , (xn, yn), a fixed kernel φ
and the bandwidth on axes bx and by . Eq. 12 can be evaluated
on a grid as XY T where Xji = φ ((gxj − xi) /

√
nbx) and

gxj is the jth grid point, and similarly for Y [27].
Now we can get the densest region of relations between

links (i.e., the grid point with maximum density value). Then
we find the closest point Pi, which represents a link actually,
to this grid point. The k points most closest to Pi are obtained
according to the SBD matrix (Sec. III-C1). The links and nodes
represented by these k points are the event-related links and
nodes we located.

Efficient computation of anomaly characterization
method: From Eq. (8), the computation of CCs for all
values of s requires O(t̃2) time, where t̃ is the time series
length i.e., the number of data points contained in a time
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series at the time of anomalous period. However, utilizing the
convolution theorem and fast Fourier transform can reduce
the computational complexity to O(t̃log(t̃)) [26]. Thus, the
time complexity of SBD is O( ñ(ñ−1)2 · t̃log(t̃)), where ñ
is the number of time series i.e., the number of suspicious
links at the anomalous period. As to the MDS, An iterative
algorithm is used in Eq. (11), which will usually converge
in around 10 iterations. And this is necessarily an O(ñ2)
calculation, where ñ indicates the number of suspicious links.
As to the KDE, The computational complexity is O(gñ) given
g grid points and ñ sample points. In this paper, we set the
number of grid points in each direction is 20, which means
g = 400. Therefore, the total computational complexity of the
proposed anomaly characterization method is Ω(ñ2), making
it prohibitively expensive for large data sets. However, the
anomaly characterization only occurs when an anomaly is
detected, and ñ � n, where n is the total number of time
series in original data. Thus, the computational complexity of
anomaly characterization is acceptable.

IV. EXPERIMENT SETUP

In this section, we first describe the two experimental
datasets (artificial data and real data), and then introduce the
parameter settings of our proposed method.

A. Artificial time series and events

1) Data description: The simulated dataset which contains
artificial time series and events are generated with the goal
of testing the method in controlled enviroments. Considering
the high noise nature of end-to-end RTT time series, we apply
auto-regressive moving average (ARMA) model to simulate
the RTT time series, which proved to do well in the end-to-
end delay prediction [30].

2) Data generation: The ARMA(p, q) model can be ex-
pressed as:

Xt = c+ εt +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjεt−j . (13)

On the basis of ensuring stationary of the time series, we
randomly generate parameters p, q, ϕi, θj . Without loss of
generality, we set p + q ≤ 3, ϕi, θj ∈ [−1, 1]. This model is
then used to simulate the RTT time series of monitored links
in this work.

As to artificial events, the four basic shapes (i.e., box,
ramp-cliff, cliff-ramp and sine) from the classic Cylinder-Bell-
Funnel dataset [31] are used. The box is characterized by a
plateau from time tick a to b, the ramp-cliff by a gradual
increase from time tick a to b followed by a sudden decline,
and the cliff-ramp by a sudden increase at time tick a and
a gradual decrease until b. The sine shape is usually used to
represent a typical wave signal. These four shapes represent
the typical morphology of events found in time series in many
fields [32]. Fig. 3 shows an instance of each of the four shapes
with some Gaussian noise added.

In the simulated dataset, the length of the event period (i.e.,
from time tick a to b) containing a shape is kept fixed to 128
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Fig. 3. Examples of box, ramp-cliff, cliff-ramp, and sine shapes.
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Fig. 4. An instance of generated RTT time series with artificial event.

time ticks. Thus, using the four basic shapes, the artificial
event is generated. However, we were not able to directly
evaluate the methods detection accuracy working only on time
series with artificial events. To evaluate the impact of event
scope on detection accuracy more directly, we need controlled
experiments involving anomalies at varying intensions. To
do this, the anomalous time series was mixed with different
amounts of normal background time series. We simulated 10
network events, each of which is 128 time ticks apart. For
each artificial event, we randomly selected 50 time series from
the overall n (varying from 50 to 3200) simulated RTT time
series and embedded the artificial shape with different levels
of amplitude in a fixed time period as event-related links. An
instance of generated RTT time series with the shape of ramp-
cliff is shown in Fig. 4. And this link is the event-related link
for the first simulated event with a start and end time tick from
129 to 256.

B. Real network measurement data

1) Data description: Our real dataset collection is done by
downloading RIPE Atlas built-in measurements [6] with the
API it provides. The RIPE Atlas built-in traceroute measure-
ments are made up of traceroutes from all built-in probes to
13 DNS root servers every 30 minutes. Due to the widely
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Fig. 5. An example of traceroute traffic asymmetry.

distribution of probes and anycast DNS root server deploy-
ment, this is actually traceroute data collected from more
than 500 root servers. In this paper, We analyzed the built-
in traceroute measurements from May 1st to June 30th, 2015
and November 1st to December 31st, 2015. Corresponding to
a total of 1.01 billion IPv4 traceroutes. According to some of
our exclusions, tens of thousands of RTT time series generated
from the traceroutes per day.

2) Data preprocessing: However, using traceroutes to
calculate RTTs of adjacent hops presents the challenge of
traceroute traffic asymmetry due to the diversity of routing
[33], [34]. Fig. 5 illustrates an example of round-trip traffic
asymmetry. The solid line and dotted line represent the forward
and return path, respectively.

To deal with this problem, we utilize the solution proposed
by [3], which takes advantage of the path diversity of multiple
probes to the same destination to precisely monitor the delay
fluctuations of adjacent links. Let us revisit the example shown
in Fig. 5. Suppose RTTPX represents the RTT from probe P
to a target X. The difference between the RTT from P to the
adjacent routers B and C is noted as differential RTT ∆PBC

which is decomposed as follows:

∆PBC = RTTPC −RTTPB
= δBC + δCD + δDA − δBA
= δBC + εPBC

(14)

Where δBC is the delay of link lBC and εPBC is the time
difference between the two return paths. The value of δBC
only depends on routers B and C, and is unrelated to the probe
P. In contrast, εPBC is tied to P. Suppose we have n probes
Pi, i ∈ [1, n], all of the probes go forward through B and C,
but each returns in a different path. Thus the differential RTTs
∆PiBC for all probe results has the same δBC and independent
εPiBC . The independence of εPiBC also means the distribution
of ∆PiBC will remain stable as the sample grows given that
δBC is a constant. In contrast, a significant change in δBC
affects all the different RTT values, and the distribution of
∆PiBC varies with δBC changes. Monitoring these changes
allows us to discard the uncertainty in the return path (εPiBC)
and focus only on the delay changes of adjacent links (δBC).

In order to limit the impact of εPiBC , we try to increase the
diversity of the return paths by avoiding all the probes from the
same AS. We designed two strategies to ensure the diversity
of probes. The first strategy, which aims to ensure the diversity

of the return paths, is that the probes which used to calculate
the RTTs of adjacent hops must be from at least three different
ASs. The second strategy uses normalized entropy to ensure a
balanced number of probes per AS. Let A = {ai|i ∈ [1,m]}
be the number of probes for each of the m ASs monitoring a
certain link, then the entropy H(A) is defined as:

H(A) = − 1

lnm

m∑
i=1

P (ai) lnP (ai) (15)

Low entropy, H(A) ' 0, means most probes are concentrated
in one AS, while high entropy, H(A) ' 1, means probes are
evenly distributed in all ASs. our second strategy ensures that
H(A) > 0.5. If this is not met (i.e., H(A) <= 0.5), we will
randomly select the probe from the AS which has the most
probes (i.e., ai = max(A)) and discarding it until the second
strategy is satisfied.

Note that there are a lot of measurements for the end-to-
end RTT from multiple probes of different ASs at one time
tick. We use the median RTT which accounts for it does
not fluctuate greatly due to significant changes of individual
probes. Meanwhile, as to missing value in the measurement,
we set it to a relatively large value (e.g., 3 times the maximum
measured value of links’ RTT). This is because the missing
value may be caused by routing changes due to network
congestion. For this, we want to be able to detect a link state
change where there is a missing value.

C. Baseline methods

We compare our proposed method with the following base-
lines:

1) PCA-based method [9], [14]: The anomaly detection
method is based on a separation of the high-dimensional
space occupied by the set of RTT time series data
into disjoint subspaces corresponding to normal and
anomalous network conditions. For the characterization
of the event, it computes a vector of features (e.g., lag
correlation, strength of seasonality, spectral entropy, etc.)
on each time series. Then it uses principal component
decomposition on the features, and uses various bivariate
outlier detection methods to locate the anomalous time
series.

2) MSSA-based method [15]: It utilizes multivariate sin-
gular spectrum analysis (MSSA) to build a generative
model for detection of changes in the characteristics of
a random process. The model builds up a sliding window
online anomaly detector which gives an anomalous score
for a time tick in multiple time series data. For the char-
acterization of the event, the links with the maximum
deviation between the predicted value and the real value
are regarded as the anomalous links.

For all these baseline methods, we have modified their base
version to compatible with large-scale of time series data.

D. Evaluation metrics

We evaluate the methods performance in terms of two tasks
i.e., accuracy and efficiency. We evaluate the precision, recall
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and time overhead between the proposed detection method
and the baselines. As for the characterization of the event, we
evaluate the Jaccard similarity and time cost. All these metrics
are defined as follows:

1) Precision, which gives the fraction of true events re-
ported over all reported events.

2) Recall, which gives the fraction of true events reported
over all true events.

3) Time cost, which compares the anomaly detection and
characterization time cost between all the methods.

4) Jaccard similarity, defined as J(L̂,L) = |L̂∩L|
|L̂∪L| for

the located anomalous node/link set L̂ and the real
anomalous node/link set L.

E. Parameter configuration

In the process of the anomaly detection, we detected
whether there is an anomaly using twice of the change-point
detection algorithm. For cost function C, we use Normal dis-
tribution. And we apply MBIC which has the strongest noise
resistance, as a penalty, for the first change-point detection
of RTT time series. This is because the RTT time series has
strong noise and is easy to cause false postive. Meanwhile, for
the second change-point detection of change-point time series,
we apply BIC as the penalty which has a higher sensitivity so
as to reduce the false negative. The size of detection time
window W1 was set to 3 time ticks for the change-point
detection of single link’s RTT time series and we use a larger
window size W2 of 5 time ticks for the change-point time
series of the whole monitored network. In general, the larger
the window gets, the more aggregated the alarms become. Note
that the interval of each adjacent time tick in our real dataset
is half an hour, this is because RIPE built-in measurements
initiates traceroute every 30 minutes. In KDE, we simply apply
Normal distribution as the kernal function.

V. EXPERIMENT RESULTS

In this section we present our experimental results of event
detection and characterization both in the simulated and real
network datasets using our proposed method.

All experiments are performed on a Linux platform with an
AMD OPTERON X3216 (3.0GHz) and 32 GB DRAM mem-
ory, running Ubuntu. Our proposed method and the baseline
methods are all implemented in R with publicly available 1.

A. Results on simulated dataset

1) Event detection: As described in Sec. IV-A2, our simu-
lated dataset has n (n ∈ [50, 3200]) generated RTT time series
and is embedded with 10 anomalous events. Each anomaly has
50 event-related links and each event lasts for 128 time ticks
with spaced 128 time ticks apart.

Fig. 6 shows the ground-truth and our anomaly detection
results on the simulated dataset where anomaly intensity is
12.5% i.e., event-related links account for 12.5% of all the
monitored links (n = 400). The blue and green vertical lines

1https://github.com/hbn1987/Artt
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Fig. 6. Change-point detection of the change-point time series of the whole
simulated network, where anomalous links comprise 12.5% of all the links.

shown in Fig. 6(a) indicate the start and end time of the event,
respectively. The result shows that all the simulated events
were detected. Note that change-points may also exist during
the artificial events due to the large state changes of links
during the event. Therefore, in order to determine the duration
of the event, we aggregate the change-points which are close
in time (e.g., the 2nd, 6th and 10th artificial events shown
in Fig. 6(b)). Fig. 6(c) shows the aggregate results which are
consistent with the actual time of artificial events shown in
Fig. 6(a).

2) Event characterization: After detecting anomalous
events, we identify the nodes and links which are responsible
for those events. In this section, we take the 1st, 5th and 10th

artificial events as examples to illustrate in detail, where event-
related links account for 12.5% of all the monitored links (i.e.,
n = 400).

As shown in Fig. 6(c), the starting and ending time tick of
the 1st event is 158 and 258. In order to incorporate all event-
related links into the subsequent analysis, we move the starting
and ending time of the event forward and backward by w(=
10) time windows. That is, we extract all links with change-
point during the time tick 148(= 158−w) and 268(= 258+w).
Then we calculate the SBD between these links and apply
MDS to convert SBD to Euclidean distances as shown in Fig.
7(a). The red hollow points indicate the 50 event-related links
(i.e., the ground truth), while the blue cross points represent
event-independent links (these links also have change-point in
the anomaly period). we can see that the relations (distances)
between event-ralated links are more intensive.

Next, we apply two-dimensional KDE to find the densest
region and the grid point gmax with the largest density value
shown in Fig. 7(b). Then we find the nearest point to gmax as a
center pc and obtain the k(= 50) nearest points to pc according
to the SBD matrix. The k nearest points pi, i ∈ [1, 50] are the
event-related links we located. Among the k(= 50) suspicious
links located by our charaterization method in the 1st artificial
event, the real event-related links is 49 which shows a high
Jaccard similarity (i.e., 96.1%).

Fig. 8 and Fig. 9 show the MDS and KDE on SBD matrix
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Fig. 7. MDS and KDE on SBD matrix of the 1st artificial event, where
anomalous links comprise 12.5% of all the links.
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Fig. 8. MDS and KDE on SBD matrix of the 5th artificial event, where
anomalous links comprise 12.5% of all the links.

of the 5th and 10th artificial events, respectively. In the two
artificial events, we located k(= 50) links with a Jaccard
similarity of 92.3% and 69.5%, respectively.

3) Quantitative results: The detection precision and recall
of the proposed and baseline methods at varying anomaly
intensions are shown in Fig.10. First, all anomalies are easily
detected when the proportion of event-related link is high. Sec-
ond, we note that with the reduction of the proportion of event-
related links, the detection accuracy of the proposed method
gradually declined. This is because the event-related links must
be greater than a certain threshold (i.e., the event has a certain
influence on the network) in order for change-point detection
algorithm to feel the state change of the overall monitored
network. Third, the precision of our proposed method is higher
than that of baselines in most cases of anomaly intensions,
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Fig. 9. MDS and KDE on SBD matrix of the 10th artificial event, where
anomalous links comprise 12.5% of all the links.

indicating that the twice change-point detection method can
effectively resist the false positives caused by noises.

Fig. 11 shows the average Jaccard similarity of all the
method at varying anomaly intensions. The average Jaccard
similarity is calculated by the average of 10 artificial events
and it measures the accuracy of the event characterization. Ob-
viously, the accuracy of the proposed characterization method
is much higher than that of baselines.

Fig. 12 shows the average detection and characterization
time cost of all the methods at varying anomaly intensions.
With the increase of data volume, the detection time cost of
MSSA-based method increases rapidly and is several orders of
magnitude higher than other methods as shown in Fig. 12(a).
Thus, the MSSA-based detection method is not applicable to
large-scale of time series data. As to the characterization time
cost shown in Fig. 12(b). The time overhead of PCA-based
method is orders of magnitude higher than other methods. This
is because it requires multi-dimensional feature extraction for
all links at the anomalous period, while our proposed method
only analyzes links with state changes at anomalous period,
which greatly reduces the amount of data required for analysis
and improves the efficiency of event characterization.

B. Results on real network mearsurent dataset
In this section, we present three cases using the RIPE Atlas

dataset [6] where traceroute data is preprocessed according to
Sec. IV-B2.

1) Case 1: DDoS attack on DNS root servers: Our first
case study shows the impact of a large distributed DDoS
attacks on the performance of the network we monitored.
According to the records of related researches [35], [36],
there were two DDoS attacks against DNS root server during
this event, which caused a large area of network anomalies.
The first attack took place between 06:50 and 09:30 UTC on
November 30th, 2015 and the second between 05:10 and 06:10
UTC on December 1st, 2015.

Event detection: Monitoring the change-points magnitude
for the traceroutes show the two attacks in Fig. 13. The
two peaks on November 30th, 2015 and December 1st, 2015
detected by our change-point detection method indicate that
there are link state changes beyond the normal range in the
network.

Event characterization: Fig. 14(a) and Fig. 14(b) show the
MDS and KDE on the SBD matrix of different attack periods,
i.e., the first attack on November 30th, 2015 and the second
on December 1st, 2015.

We carry out the IP addresses we located which map for
these event-related links on the first and second attacks shown
in Fig. 15 and Fig. 16, respectively. The red node indicates
the nodes corresponding to the 50 nearest links to the relation
central link pc. These links are the most suspicious links
related to the event that we located. The nodes in purple
represent the nodes corresponding to the 75 nearest links to
link pc. The grey nodes represent the corresponding nodes of
the 100 links closest to link pc. The links between nodes are
represented by lines. Our method of troubleshooting based on
the correlation level of nodes will help to locate the fault node
quickly, thus greatly reducing the troubleshooting time.
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Fig. 10. The detection precision and recall of the proposed and baseline methods at varying anomaly intensions.

Fig. 11. The average Jaccard similarity of all the method at varying anomaly
intensions.

2) Case 2: Telekom Malaysia BGP route leak: The second
case study reveals a different type of network outage from
the first one, a network event caused by exceptional routing
traffic. On 12th June 2015, Telekom Malaysia (AS4788)
mistakenly sent BGP notices to its provider (Level(3) Global
Crossing) at 08:43 UTC. The resulting traffic attraction to
Telekom Malaysia had led to increase delays for Internet users
around the world. The incident was acknowledged by Telekom
Malaysia and reported by the BGP monitoring project [37],
[38].

Event detection: Fig. 17 depicts the magnitude in terms of
the change-points on the whole monitored network. The peak
detected by the change-point detection method in Fig. 17 is
08:30 - 11:30 UTC on June 12th, in good agreement with time
reported in the Telekom Malaysia report [37].

Event characterization: We conducted MDS and KDE for
SBD matrix of the links with state changes between 6 : 00(=

8 : 30−w) and 13 : 00(11 : 30+w) on June 12th shown in Fig.
18, where w = 5 time ticks (i.e., 2.5 hours). Fig. 19 shows the
IP addresses we located. The reverse DNS queries for these
addresses show congestion in many European countries and
this is consistent with the facts.

3) Case 3: Amsterdam Internet exchange outage: In this
case, the network event was caused by a misconfiguration of
an Internet switching device, which resulted in widespread
connection problems in the Amsterdam Internet exchange
(AMS-IX) around 10:20 UTC on May 13th, 2015. This event
prevents many networks from exchanging traffic via the AMS-
IX platform, which in turn makes many Internet services
unavailable [39]. AMS-IX reported that the problem was
resolved at 10:30 UTC, but some reports indicate that network
traffic and performance did not return to normal until 12:00
UTC [40].

Event detection: As shown in Fig. 20, there is a significant
peak on May 13th from 9:30 UTC to 11:30 UTC using our
change-point detection method. This period coincides with the
time of the event.

In this case, the detection of network anomaly is not through
the change of raw RTT data. Packet loss or path changes
during the event caused a lot of missing values of RTT. As
described in Sec. IV-B2, we artificially set a large value for the
missing ones. That is to say, when the change-point detection
algorithm encounters a missing value, it is likely that this point
will be regard as a state change point. When there is a large
amount of missing data in the whole network, the state change
of the network will be detected.

Event characterization: The SBD and KDE on SBD matrix
is shown in Fig. 21 and Fig. 22 shows the event-related links
and nodes we located according to the level of correlation.

VI. CONCLUSION

In this paper, we proposed an unsupervised approach for
detecting and characterizing events in large-scale RTT time
series. Our proposed twice change-point detection algorithm
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Fig. 12. The average detection and characterization time cost of all the methods at varying anomaly intensions.
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Fig. 13. The change-point detection on the change-point time series of the
monitored network from November 29th, 2015 to December 2nd, 2015.
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Fig. 14. MDS and KDE on the SBD matrix of different attack periods.

which greatly compresses the error alarms caused by the
noise nature of RTT time series and improve the detection
accuracy. Another key aspect of our method is its focus on
characterization which incorporates three different techniques:
a shape-based distance measure, a multidimensional scaling
and the kernel density estimation, in addition to spotting
suspicious event-related links, we also pinpoint the specific
nodes according to correlation level that are most responsible
for the anomaly.

Fig. 15. A part of the visualization result on the located event-related nodes
on November 30th, 2015.

Fig. 16. A part of the visualization result on the located event-related nodes
on December 1st, 2015.

We validated our proposed method on a simulated dataset of
artificial time series and events. Our approach has successfully
detected the anomalies, as well as unearthing the links and
nodes responsible for those events with high accuracy. Ad-
ditional experiments on a real network measurement dataset
identified three major events with the suspicious nodes/links
involved in those events which agree with the facts.
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Fig. 17. The change-point detection on the change-point time series of the
monitored network on June 12th, 2015.

−0.50

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25

X

Y

Fig. 18. MDS and KDE on the SBD matrix of Telekom Malaysia BGP route
leak on June 12th, 2015.

Fig. 19. A part of the visualization result on the located event-related nodes
on June 12th, 2015.
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Fig. 20. The change-point detection on the change-point time series of the
monitored network on May 13th, 2015.
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Fig. 21. MDS and KDE on the SBD matrix of Amsterdam Internet exchange
outage on May 13th, 2015.

Fig. 22. A part of the visualization result on the located event-related nodes
on May 13th, 2015.
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In short, our experimental results have provided evidence
that our proposed approach is successful for event detection
and characterization with high performance both in simulated
dataset with ground truth and real dataset with real events. And
its relatively accurate positioning will greatly reduce network
troubleshooting time.
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