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Abstract—A key performance indicator (KPI) consists of crit-
ical time series data that reflect the runtime states of network
systems (e.g., response time and available bandwidth). Despite the
importance of KPI, datasets for KPI anomaly detection available
to the public are very limited, due to privacy concerns and the
high overhead in manually labelling the data. The insufficiency
of public KPI data poses a great barrier for network researchers
and practitioners to evaluate and test what-if scenarios in the
development of artificial intelligence for IT operations (AIOps)
and anomaly detection algorithms. To tackle the difficulty, we
develop a univariate time series generation tool called TSAGen,
which can generate KPI data with anomalies and controllable
characteristics for KPI anomaly detection. Experiment results
show that the data generated by TSAGen can be used for
comprehensive evaluation of anomaly detection algorithms with
diverse user-defined what-if scenarios.

Index Terms—time series generation, time series anomaly
detection, fault injection, AIOps.

I. INTRODUCTION

LARGE companies that provide Internet-based services,
such as online shopping and cloud computing, need to

closely monitor the real-time performance of their systems,
since a short interruption in networks or quality degradation
in services may result in tremendous business losses. The real-
time performance indicators (e.g., response time and available
bandwidth) are generally collected and stored as time series,
named key performance indicators (KPIs1) [1]–[11]. To ensure
smooth business operations, it is critical for these companies
to develop artificial intelligence for IT operations (AIOps) that
can accurately detect KPI anomalies and respond with timely
troubleshooting.

Detecting KPI anomalies requires substantial efforts in
collecting/labelling KPI data for testing the anomaly detection
algorithms before their real-world deployment. Unlike tradi-
tional time series data such as weather or climate data, KPI
data are much larger and requires domain experts of extensive
experience to label the KPI data for anomalies. Labeled KPI
data are important and much needed no matter whether the de-
tection algorithms are supervised or unsupervised. Supervised
algorithms [11], [12] need a lot of labeled data for training and
evaluation. Although unsupervised algorithms [1], [8] do not
need labeled data in the training stage, they still need labeled
data for the purpose of evaluation.

1The term KPI has been broadly used in the domain of AIOps to refer to
critical performance metrics of networks and services.

Despite the importance of KPIs, very few KPI anomaly
datasets [12]–[14] are available to the public. This phe-
nomenon is due to two main reasons. First, manually labelling
KPI data requires domain knowledge and is very labor in-
tensive [2], [11]. Second, for privacy and security concerns,
IT companies are reluctant to publish KPI data. For the first
problem, without a tool, it may takes hours to label a year-
long KPI data. Even with the help of advanced labeling tools,
such as Label-Less [2], it still takes tens of minutes to label
it. While with optimistic prediction the first problem may be
eventually solved in the future, it is unlikely that the second
problem will be alleviated due to the business value of KPI
data.

The deficiency of labeled KPI data leads to the following
problems in KPI anomaly detection.

• Insufficient Evaluation: The insufficiency of evaluation
is reflected in two aspects. (1) Unlike the computer vision
domain where detection algorithms are subject to the
test with large-scale benchmark datasets such as Ima-
geNet [15], KPI anomaly detection is usually evaluated
with much smaller datasets. As a result, KPI anomaly
detection algorithms may achieve great results on some
public datasets, but may perform not so good as claimed
in production environment. (2) Some detection algorithms
may be sensitive to specific types of anomalies, but not
good at detecting other types of anomalies. Some algo-
rithms are suitable for seasonal KPI anomaly detection,
while showing poor performance on other types of KPIs.
However, current public datasets rarely distinguish the
type of anomalies, let alone provide a fine tuning knob
to adjust the severity of a special type of anomaly.

• Immutable Scenarios: It is hard to build what-if scenar-
ios to evaluate algorithms’ performance under hypothet-
ical situations. What-if scenarios are necessary to stress-
test the algorithms with an environment that is rare in
real world but may cause serious problems if not dealt
with. Clearly, KPI data collected from regular service
operations are static (i.e., it is hard to change components
and characteristics in the collected KPIs) and may not
capture these rare events (e.g., sudden drift from normal
patterns or anomalies of extremely high density) to al-
low such stress-tests, let alone conduct variable control
experiments to explore the effect of different factors on
the performance of detectors.
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The above two problems make it extremely challenging for
network operators to select and test detectors. If detectors are
not thoroughly tested before deployment, we may still end up
with service disruptions such as those described in [16]–[18].
Overall, KPI anomaly detection, as one of the main functions
of AIOps, is in dire need of a tool that can automatically
generate synthetic KPI data to address the above problems.
Developing such a tool is not a simple implementation of ex-
isting time series generation algorithms such as those in [19].
Instead, it involves non-trivial technical challenges and needs
to meet the following requirements:

• Instead of reproducing existing data, generated time series
must be innovative and controllable to enable what-
if scenarios. In this regard, we need to control the
statistical behavior of the data and generate time series
that may have not appeared in the current production
environment, but is likely to happen in the future, e.g.,
a steep increment due to business growth, a traffic spike
due to potential attacks, or a high drift due to the holiday
effect;

• Injected anomalies must be diverse and effective to
ensure the quality of ground-truth for evaluation, i.e. how
to generate a variety of anomalies, how to define/change
the degree of anomalies for the benchmark comparison;

• The tool itself must be modular, expandable, and
tractable so that the users can easily customize their
needs when testing detection algorithms.

To tackle the above technical challenges, we develop a
time series generation tool called TSAGen, which meets all
the above requirements and enables users to comprehensively
evaluate the performance of anomaly detection algorithms
with synthetic KPI data of rich characteristics. To meet the
first requirement, we apply Random Midpoint Displacement
Fractal (RMDF) for the generation of KPI, and propose a
feature set for controlling the characteristics of generated KPI.
To meet the second requirement, we propose an innovative
method to generate diverse anomalies and use Extreme Value
Theory (EVT) for adjusting the severity of anomalies. For
the last requirement, we adopt an additive modular design
and generate each component independently, so that users can
plug-and-play individual modules easily.

To sum up, our major contributions are as follows:

• To the best of our knowledge, this is the first work that
systematically addresses the special challenges in gen-
erating KPI data with anomalies. We innovatively apply
RMDF and EVT in the generation of high-quality KPI
data with various controllable characteristics to facilitate
what-if tests;

• This is the first attempt to define and tackle the Insuffi-
cient Evaluation and Immutable Scenario problems in
the KPI anomaly detection domain. TSAGen is the first
step towards comprehensive evaluation and what-if test;

• We propose a feature representation method for KPI
anomaly detection. These features capture the most im-
portant characteristic of KPI, and hence allow users
to easily define the desired statistical properties of the
synthetic KPI data;

• We open-source TSAGen at a public repository2. Also,
we provide a public benchmark dataset generated by
TSAGen, which can be used for comprehensive evalu-
ation of KPI anomaly detection algorithms3.

In this paper, we mainly focus on univariate KPI (univariate
time series), multivariate KPI (multivariate time series) is left
as our future work.

The rest of this paper is organized as follows. In Section II,
we review related works. In Section III, we give an overview of
TSAGen. In Section IV, we explain how to generate the time
series. In Section V, we explain how to generate the anomalies.
We evaluate TSAGen in Section VI and discuss relevant issues
in Section VII. The paper is concluded in Section VIII.

II. RELATED WORK

A. Time Series Generation

Time series generation is not new and has been broadly
studied in various domains, e.g., energy, climate, medical, and
financial domains [20]–[26]. Existing methods can be roughly
divided into three categories: traditional statistical methods,
reconstruction methods, and deep generative methods.

1) Traditional statistical methods: Predicting future data
can also be considered as a way of generating data. As
such, many time series models like Markov Models, Auto
Regressive Integrated Moving Average (ARIMA) [27], and
Holt-winters [28] also have the ability to generate data. In [25],
Kang et.al. [25] proposed an approach to time series gener-
ation, based on the Gaussian mixture autoregressive (MAR)
model and parameter optimization with a Genetic Algorithm
(GA). In general, these methods are not purposefully designed
for KPI data generation for anomaly detection and cannot
effectively address the challenges introduced in Section I.

2) Reconstruction methods: These methods are usually
dataset-oriented and take historical dataset as input and output
new datasets via decomposition and reconstruction [20], [21],
[26], [29]. These methods usually do not need a model
and generate new data with existing data by shuffle [20],
averaging [29], and modification [21]. For instance, Iftikhar
et.al. proposed a method [26] to decompose an existing time
series by Seasonal and Trend decomposition using Loess
(STL), where Loess is a method for estimating nonlinear
relationships [30]. After that, it recombines the components
to generate new data. These methods can be used to augment
sparse datasets, but have a limited power in controlling the
generated data, because the generated data are usually the
modification and reproduction of the original data. Therefore,
this kind of methods is not suitable for the task of KPI anomaly
detection.

3) Deep generative methods: Deep generative models like
Generative Adversarial Networks (GANs) [31] and Variational
Auto-Encoders (VAEs) [32] are well known for their power in
generating realistic pictures. They are recently applied in the
generation of time series data [22]–[24]. Yoon et.al. proposed
TimeGAN [22], a GAN-based framework for generating time

2Code is available at https://github.com/AprilCal/TSAGen.
3Benchmark dataset is available at https://github.com/AprilCal/TSAGen.
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series data, which jointly optimizes both supervised and adver-
sarial objectives to make the network adhere to the statistical
features of the training data during sampling. As discussed
in [33], it is extremely hard to control the characteristics
of generated data using GAN, let alone generate data in a
variable-control manner (which requires modifying one feature
without distorting other features). This problem roots from the
main design goal of these methods: generating simulated data
indistinguishable from the training data. This goal is thus more
suitable for the task of prediction and classification, but not
for the task of anomaly detection.

TSAGen differs from all the above methods: (1) It is
specifically designed for the purpose of evaluation of detection
algorithms, with much consideration on anomaly generation;
(2) It can provide powerful control on the characteristics of
generated data; (3) It has the ability to inject various anomalies
with control on their position, type and severity; (4) It uses
features directly as input, which can work with little data or
no data at all.

B. Anomaly Injection

KPI generation is relatively new in KPI anomaly detection
domain. There is only a limited amount of literature related to
time series anomaly injection. Ren et al. [34] inject synthetic
anomalies into real data and use generated anomalies to train
a CNN-based detector. They randomly select several points in
KPIs and calculate the injection values to replace the original
points. This method has a limited power in generating new KPI
and can only injects point anomalies based on selected points.
It is not designed for building what-if scenarios with variable
control. Laptev et al. [12] implemented a time series generator
in about 300 lines of Python code, which can inject synthetic
anomalies into real data. Nevertheless, the generated data have
simple patterns only and are not suitable for comprehensive
evaluation of KPI anomaly detection algorithm. Laptev also
proposed AnoGen [35], which can deterministically generate
time series through sampling from the latent z space as well
as anomaly through sampling from the outlier region of the
latent z space of a trained VAE. However, this method cannot
control the type of generated anomalies and the severity of
anomalies. TSAGen differs from the above methods in that it
can control both the type and the severity of anomalies.

III. OVERVIEW OF TSAGEN

In this section, we first introduce the motivating scenarios
that operators often encounter in practice as well as our design
goals. Then we introduce the modeling of KPI. Finally, we
present the workflow of TSAGen.

A. Motivating Scenarios and Use Cases

Motivating scenarios: Fig. 1 shows a typical scenario of
network and service management. From the perspective of
operators, the whole system is divided into two layers, the
network layer and the management layer. In the network
layer, system and service level indicators are collected from
hardware and applications, respectively, then saved as time

series data in the management layer. In the management layer,
the anomaly detection algorithm monitors the KPI data from
the network layer in real time, and notifies operators when an
anomaly is detected.
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Fig. 1: Motivating Scenarios.

With the rise of AIOps, the pressure of operators has been
effectively alleviated: operators do not need to closely monitor
these indicators, but instead only need to select appropriate
detection algorithms, and timely handle the anomalies re-
ported by the detection algorithms. Nevertheless, due to the
insufficient evaluation and immutable scenarios problems
presented in Section I, it is not easy for operators to select an
appropriate detector. As reported in [11], it is not uncommon
for operators to give up after a few attempts of testing detectors
and settle with static, threshold-based detection. If the selected
detector is not robust enough or not suitable for the KPI
being monitored, we may not avoid disruptions such as those
described in [16]–[18]. How to select the proper detector
becomes a problem that has plagued operators for a long time.
For example, How to select a proper detector for seasonal KPI?
How to select a detector to detect abrupt changes? How robust
is the selected detector?

We are thus motivated to answer the above call and develop
a tractable tool, which benefits network and service manage-
ment by helping operators to choose appropriate detection
algorithms as well as developers to evaluate their algorithms.

Use cases: There are many potential use cases that can
benefit from TSAGen. We highlight several typical use cases
as follows.

1) Use case 1: Alice wants to select a proper detector for
seasonal KPIs, but existing public datasets [12], [13] do not
distinguish different types of KPIs. So Alice uses TSAGen to
generate a large number of seasonal KPIs and evaluates her
algorithm on the generated dataset.

2) Use case 2: Bob wants to detect abrupt changes [8] in
his application server, so he wants to evaluate which detector
performs better on this kind of anomaly. With TSAGen, he
injects a large amount of anomalies of this type into generated
data and evaluates the detector on the generated data.

3) Use case 3: Charlie worries about the robustness (e.g.
resistance to drift, noise, and missing values) of the detector
to be deployed, so he uses TSAGen to generate KPI data with
various drift degrees, noise levels, and missing rates without
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distorting other components. Quite often, the characteristics in
real data are static. To avoid the problem, he needs TSAGen
to generate KPI data of dynamic characteristics, with only one
feature varying at a time.

B. Modeling of KPI

1) KPI dataset: KPI is essentially a time series denoted as:

x = (x1, ..., xi, ..., xT ), 1 ≤ i ≤ T, xi ∈ R, T ∈ N (1)

where xi is the monitored value at time index i. We use xm:n

to represent a continuous subsequence of length n−m+ 1 of
time series x in the rest of this paper.

KPI dataset is a set of time series denoted as:

D = {xj | 1 ≤ j ≤ n,xj ∈ RT , n, T ∈ N} (2)

where xj is time series and j is the index of the time series.
2) KPI Components: To control the generated KPI and

improve the modularity of TSAGen as much as possible, we
adopt an additive model, which is a widely used model in time
series analysis [36]. By applying the additive model, we do
not need to generate time series as a whole; instead, we can
generate each component independently and get the ultimate
result by combining all the components. To be specific, a KPI
time series is represented with several components of the same
length in the following form:

xt = seast + trt + noiset (3)

where seast, trt, noiset represent the seasonal, trend and
noise components, respectively. A time series xt is the result
of adding the corresponding values of these components.
This modular method enables users to control and change
each component independently without distorting other com-
ponents, which is needed for variable control experiments and
greatly facilitates what-if tests.

3) Time Series Features: Time series features are used
as the approximate representation of time series. Our goal
here is to propose a feature set that can capture important
characteristics of KPI, so as to control the behavior of KPI
via the feature set. In addition, the features are attributed to
different KPI components described above, so that we can
control each component through the related feature values.

Given a time series xt, we have two features associated with
the trend component:

θ1 = level(trt), θ1 ∈ R (4)

θ2 = slope(trt), θ2 ∈ (−π
2
,
π

2
) (5)

where θ1 denotes the level of trend and θ2 denotes the slope
of trend. We assume that there is a linear trend in xt, and the
trend is essentially a line controlled by level (θ1) and slope
(θ2). Through tuning θ1 and θ2, we can obtain any possible
linear trend.

The following three features are associated with the seasonal
component of the time series:

θ3 = amplitude(seast), θ3 ∈ (0,+∞) (6)

θ4 = freq(seast), θ4 ∈ (0,+∞) (7)

θ5 = cn(seast), θ5 ∈ (0,+∞) (8)

where θ3, θ4, θ5 represent the amplitude, frequency and num-
ber of cycles for the seast component, respectively. Through
tuning θ3, θ4 and θ5, we can control the behavior of seasonal
component. In anomaly detection, people care more about
the variation in the seasonal components, because if the
shapes of the generated cycles are almost identical, then the
generated seasonal components may not diverse enough to test
anomaly detection algorithms. For this reason, practitioners
usually focus on the difference between cycles. In this paper,
we use RMDF to generate random cycle shapes. Note that
TSAGen allows users to control/adjust the shape of cycles
by implementing their own new season generator, e.g., using
Fourier series or some other methods to generate desired cycle
shapes. More details will be described in Section IV.

The following four features are associated with the noise
component of the time series:

θ6 = µ = mean(noiset) =
1

T

T∑
t=1

noiset (9)

θ7 = std(noiset) =

√∑T
t=1(noiset − µ)2

T − 1
(10)

θ8 = skew(noiset) =
T−1

∑T
t=1(noiset − µ)3

(T−1
∑T
t=1(noiset − µ))3/2

(11)

θ9 = kurt(noiset) =
T
∑t=1
T (noiset − µ)4

(
∑T
t=1(noiset − µ)2)2

(12)

where θ6, θ7 represent the mean and the standard deviation
of noiset, respectively, θ8, θ9 represent the third and fourth
standardized moments of noiset, respectively, i.e., skewness
and kurtosis, µ denotes the mean of noiset. It is necessary to
point out that the type of noise component is not a feature,
since we use the Pearson Distribution to model the noise
component, the type of noise is determined by it statistical
moments. This method is also known as the method of
moments [37], [38]. Details will be described in Section IV.

In production environment, KPI may not be strictly sea-
sonal, since the amplitude and frequency of KPI might slowly
drift over time. What’s more, the seasonal behavior may be
affected by the holiday effects [7]. We accommodate this
phenomenon in TSAGen by applying two drift factors on
amplitude and frequency, respectively:

ai ∼ U(1, 1 + k1), 1 ≤ i ≤ θ4, k1 ∈ [0,+∞) (13)

fi ∼ U(1, 1 + k2), 1 ≤ i ≤ θ4, k2 ∈ [0,+∞) (14)

where U is uniform distribution, ai is the drift factor of
amplitude, fi is the drift factor of frequency. We can apply
ai and fi on every cycle. The system parameters k1 and k2
are used to control the degree of drift, where k1 = k2 = 0
means that there is no drift in the seasonal component.

All time series features are summarized in Table I. Note that
to ease understanding, three more features, recursion depth (d),
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forking depth (d̂) and risk (q), will be introduced later after we
introduce RMDF and EVT in Sections IV and V, respectively.

TABLE I: Time series features

Feature Description value

θ1 level of trend (−∞,+∞)
θ2 slope of trend (−π/2,+π/2)
θ3 amplitude (0,+∞)
θ4 frequency (0,+∞)
θ5 no. of cycle [1,+∞)
θ6 mean -
θ7 standard deviation [0,+∞)
θ8 skewness -
θ9 kurtosis -
k1 drift degree of amplitude [0,+∞)
k2 drift degree of frequency [0,+∞)
d recursion depth N+

d̂ forking depth N+, d̂ < d
q risk (0, 1)

4) Meta Features: TSAGen is both KPI-oriented and
dataset-oriented. When a user want to quickly generate a large
number of KPI datsets with different feature values, they can
use the so-called meta features, i.e., the features that captures
the value distributions of the time series features (θi and kj)
introduced above. Given a set of θi and a set of kj , we define
the meta features:

σi =(max(θi), upper(θi),mid(θi), lower(θi),min(θi)),

1 ≤ i ≤ 9 (15)
σ′j =(max(kj), upper(kj),mid(kj), lower(kj),min(kj)),

j = 1, 2. (16)

where upper and lower represent the upper and lower quar-
tile, respectively, max, min, and mid denote the maximum,
minimum, and median, respectively.

Given the above meta features, we can quickly generate
a large KPI dataset consisting of many KPIs whose features
follow the distribution described by the meta features.

C. Overview of TSAGen

We describe the architecture of TSAGen in Fig. 2. There
are three main stages in a complete workflow of TSAGen: KPI
generation, anomaly injection, and benchmark evaluation.

In the KPI generation stage, TSAGen first takes input
features (time series features or meta features) from the opera-
tor. Then seasonal, trend and noise components are generated
by Season Generator, Trend Generator and Noise Generator,
respectively. The Season Generator first generates the shape
of a single cycle, and then expands the cycle and adds drifts.
In addition, multiple seasonal components can be integrated
together by using multiple Season Generators. The Trend
Generator generates a linear trend according to the level and
the trend slope. The noise component is generated by the Noise
Generator using Pearson distribution. At the end of this stage,
all components are added together. Details of the generation
process are described in Section IV.

In the anomaly injection stage, Anomaly Generator is
responsible for the injection of anomalies. It first generates
random anomalies (if not specified) from predefined anomaly

patterns. Then it uses EVT to establish low probability re-
gions and make anomalies fall into these regions. Details are
described in Section V.

In the benchmark evaluation stage, the evaluated algo-
rithm is compared with benchmark algorithms. Note that the
performance of an algorithm alone on synthetic data is not
very meaningful, since we cannot draw any conclusion if
there are no competing algorithms. Even on real-world KPI
data, we also need to compare the target algorithm with com-
peting/benchmark algorithms to draw conclusion. Therefore,
we integrate some representative algorithms into TSAGen as
benchmark algorithms.

Due to the additive model, our system naturally has good
modularity. The generators in TSAGen are independent, allow-
ing users to easily define a new type of anomaly, change the
strategy of season generation or replace the noise generator.

IV. GENERATION OF TIME SERIES

Meta feature σi is used for the generation of θi. In our
current implementation, θi follows a mixture distribution com-
posed of several uniform distributions, but it is easy to replace
with other type of distributions. Given a σi, the probability
density function of θi is as follows:

pi(x) =


1

4(max(θi)−upper(θi)) upper(θi) ≤ x ≤ max(θi)
1

4(upper(θi)−mid(θi)) mid(θi) ≤ x < upper(θi)
1

4(mid(θi)−lower(θi)) lower(θi) ≤ x < mid(θi)
1

4(lower(θi)−min(θi)) min(θi) ≤ x < lower(θi)
(17)

Then we generate θi for every KPI through the probability
density function pi. With respect to k1 and k2, we allow users
to input their values directly for each KPI. Note that different
KPIs can use different k1 and k2 values. We highlight that
the distribution of θi is a design choice, which is determined
by the needs of users. For example, if users want to simulate
the distribution of real data, the distribution should be selected
to reflect the real data; If users have no prior knowledge of
real data, normal distribution may be an appropriate choice; If
users want to generate a balanced dataset, uniform distribution
may be a good candidate.

A. Generation of Trend

We use the following formula to generate the trend compo-
nent:

trt = θ1 + θ2 ∗ lt (18)

where lt = (1, 2, 3, ...) is the sequence of time index.

B. Generation of Season

We need a method that can (1) control the characteristics
(i.e., θ3 ∼ θ5, k1, k2) of the generated cycles, (2) effectively
model the normal shape difference between cycles, and (3)
facilitates anomaly generation (generate anomaly cycles and
tune the severity of anomaly). For these reasons, simply using
smooth signals (e.g., sin, cos) does not satisfy the above
requirements.
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Fig. 2: Overview of TSAGen. There are three main stages in a complete workflow of TSAGen. In the KPI generation stage, TSAGen takes as input features
from the operator and generates each component independently. In the anomaly injection stage, Anomaly Generator is responsible for the injection of
anomalies. In the benchmark evaluation stage, the evaluated algorithm (i.e., the target algorithm) is compared with benchmark algorithms.

To achieve the above goals, we apply RMDF for the
generation of cycle shapes. RMDF is widely used for the
generation of topographic map and region boundary. As we
will see below, RMDF is a simple but effective tool for the
generation of seasonal component.

P1 M P2

d=1

d=2

d=3P3

Fig. 3: RMDF process. Green, yellow and blue lines represent the curve
generated by RMDF when d = 1, 2, 3, respectively.

1) Generating Shape with RMDF: To ease explanation,
we use normal font to denote lines and bold font to denote
vectors in the following discussion, e.g., A denotes a point,
AB denotes a line, AB denotes a vector. The process of
RMDF is shown in Fig. 3. Assuming that there are two
points P1 and P2 and M is the midpoint of line P1P2, we
can generate a displacement MP3 orthogonal to P1P2 (i.e.,
P1P2·MP3 = 0), where ‖MP3‖2 (i.e., l2-norm) follows
Gaussian distribution. The coordinate of P3 can be calculated
by:

(x, y) =

√
a2 + b2

b
(cos θ, sin θ)P1M (19)

where a = ‖P1M‖2, b = ‖MP3‖2, and θ = arctan b
a . In

this way, we obtain a sequence of points P1, P3, P2, which are
also called control points. Through connecting these control
points from left to right, we can get a continuous function con-
sisting of two lines (Fig. 3, green lines). Recursively repeating
the above process on P1P3 and P3P2, respectively, we can
obtain random cycles of diverse shape. The variance of the dis-
placement’s l2-norm, named s, must decrease over recursion
depth to ensure a relatively smooth shape. Here we initialize s
to ‖P1P2‖2

4 (i.e., 1/4 when P1 = (0, 0), P2 = (1, 0)), and make

s decrease by 2 times each recursion. Constraints must be
taken to ensure the generated curve is a function. For instance,
when the random displacement accidentally has an extremely
high value, the generated curve may not be function, e.g., a
control point P happened to appear at the left of P1. Complete
process of RMDF is described in Algorithm 1.

Algorithm 1 RMDF Procedure
Input: Recursion depth d
Output: Control points
1: procedure RMDF(P1, P2, queue, depth, D)
2: if depth ≥ D then
3: queue.push(P1);
4: return;
5: M ← midpoint(P1, P2); . get mid point
6: sample an l ∼ N (0, 1/4)
7: l← l/2depth . decrease the variance of l
8: generate an MP s.t. P1P2·MP3 = 0, ‖MP ‖2 = 1
9: MP 3 ← l ×MP

10: a← ‖P1M‖2
11: b← ‖MP3‖2
12: θ ← arctan(b/a)

13: P3 ←
√
a2+b2

b (cos θ, sin θ)P1M ; . formula (19)
14: depth← depth+ 1;
15: RMDF(P1, P3, queue, depth, D);
16: RMDF(P3, P2, queue, depth, D);
17: start← (0, 0);
18: end← (0, 1);
19: init(queue);
20: depth← 0;
21: D ← d;
22: RMDF(start, end, queue, depth, D);
23: queue.push(end);
24: return queue;

Recursion depth d controls the diversity of the generated
shapes. As shown in Fig. 4, with the increment of d, the
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generated curve tends to include more small oscillations.
Because of the recursive nature of RMDF, the total number
of control points required (denoted as n) will double if d
increases by 1 (i.e., n = 20 + 21 + · · ·+ 2d−1 + 2 = 2d + 1).
Thus the computational complexity of Algorithm 1 is O(2d).
When d is small, the generated curve may be too simple; when
d becomes larger, the computational time increases but the
generated curve shows a richer shape. To balance the diversity
of the curve and the computation efficiency, we use d = 10 for
simulating KPI data in our later experiments. Besides, from
the result of Section VI-E, RMDF forking can generate curves
with enough diversity when d = 10. Thus, the exponential
complexity is not a problem for the practical use of TSAGen.

d = 1 d = 2 d = 3 d = 6 d = 10

Fig. 4: Effect of recursion depth d. With the increment of d, the generated
curve tends to include more small oscillations.

Through the RMDF process, we can eventually obtain a se-
quence of control points, and through connecting these control
points, we can obtain a continuous function F (x) composed of
several lines. The cycles are generated by sampling on F (x),
and the seasonal component is generated by connecting these
cycles. We standardize the frequency of cycle through making
P1 = (0, 0), P2 = (1, 0) and the amplitude of cycle with
scaling. Thus we can control the frequency of season through
tuning the sampling number on F (x) as well as the amplitude
of season via multiplying F (x) by a scalar.

2) Generating Seasonal Component: After we generate
cycles using the above methods, we then build the seasonal
component with the generated cycles. To explain how the
seasonal component is produced, we define cyclet,s,l as a
single cycle of seast, where l denotes the length of the
cycle, s indicates its order. Define

⊕
as connection operation

which concatenates two time series,
∑⊕

means multiple
connections, which concatenate multiple cycles in order. Thus
the seasonal component can be denoted as:

seast =

θ5∑
s=1

⊕
(θ3 ∗ as)cyclet,s,fs∗1/θ4 (20)

where fs and as are the drift factors defined in Section III-B1.
θ4 and θ5 are amplitude and frequency, respectively. The
above formula explains how the season is produced, how the
amplitude and frequency is controlled, and how the drift is
added.

3) Modeling Shape Differences and Anomalies: To model
the small shape difference between cycles, all shapes can be
generated from a certain depth during the RMDF process.
For example, during the cycle generation process, initially all
cycles can share the same shape when d < 8, and their ultimate
shape (when d = 10) is generated with two more recursions
respectively, based on the shared shape. In this case, d̂ = 2

is called the forking depth, d∗ = d − d̂ = 8 is called shared
depth. We call this method RMDF forking.

To explain how the difference is generated by RMDF
forking, let ci = {ci}2

i+1
i=1 be the set of control points

generated by a RMDF process in the i-th recursion, where
i ∈ {1, 2, . . . , d}. It is obvious that |cj | = 2j+1, cj ⊂ cj+k for
j, k ∈ N+, j+k ≤ d, thus we have |cj+k−cj | = |cj+k|−|cj | =
(2j+k + 1)− (2j + 1) = 2j(2k − 1).

For simplicity and without loss of generality, let cd1, cd2 be
two sets of control points generated by a RMDF process in
the last recursion with forking depth d̂, the set of their shared
control points can be denoted as cd1∩cd2 = cd

∗
, thus the number

of different control points (denoted as m) between the two
forking curves can be calculated by:

m = |cd1 − cd2| = |cd2 − cd1| = |cd − cd
∗
| = 2d − 2d−d̂ (21)

Based on Equation (21), with the increment of d̂, the num-
ber of different control points between two forking curves
increases as well, indicating that the difference between the
two curves becomes larger.

contrast ̂d=2 ̂d=6 ̂d=8 ̂d=9
Fig. 5: RMDF forking. With the increment of forking depth d̂, the generated
cycles tend to be more and more different from the contrast.

As shown in Fig. 5, the greater the forking depth, the larger
the difference between the generated curve and the contrast
curve. Thus RMDF forking is not only a good method to
generate random shapes, but also can effectively model the
shape difference between cycles. Besides the benefits men-
tioned above, RMDF forking also benefits anomaly generation,
which will be further discussed in Section V and evaluated in
Section VI.

C. Generation of Noise

For evaluation purpose, it is desired that a method can (1)
control the statistical properties of noise component easily, (2)
benefit anomaly generation and injection (e.g., injecting an
anomaly by varying the noise type or moment of a segment),
and (3) generate various noise types. As reported in [3], using
a single distribution like Gaussian noise cannot achieve the
third goal.

Given the above consideration, we use the Pearson distribu-
tion [37], [38] for the generation of noise component, due to
its capability of controlling the statistical proprieties of noise
component. We can generate noise component that meets user-
specified features (i.e., θ6 ∼ θ9), which are much needed for
what-if tests.

The Pearson distribution is a family of continuous probabil-
ity distributions (e.g., normal, gamma, beta and so on). For a
given combination of mean, standard deviation, skewness, and
kurtosis, we can calculate a probability density function (PDF)
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with given statistical moments through the method described
in [37], [38]. Then we can generate noise component through
the PDF.

By applying the Pearson Distribution in TSAGen, users
do not need to determine the concrete type of the noise
component. Instead, they only need to give the combination of
mean, standard deviation, skewness, and kurtosis to describe
what the distribution of the noise looks like, based on which
TSAGen can automatically determine the type of distribution.
The generation process of noise component can be denoted as
follows:

noiset = pearson(mean, sigma, skew, kurt)

V. GENERATION OF ANOMALY

A. Definition of Anomaly

Anomaly is defined in contrast to normal KPI: An anomaly
is a point or segment that deviates significantly from the rest
of the data. Clearly, anomalies depend on specific application
context and user-defined thresholds, and a large variety of
anomalies and criteria for classifying the anomalies have been
studied [12], [39], [40]. From the perspective of evaluation
of anomaly detection methods, practitioners mainly focus on
how well a detector can capture the changes in KPIs. Generally
speaking, a detector could be considered as a classifier for data
exhibiting certain patterns, i.e., data following the underline
patterns are classified as normal and otherwise anomaly.

Overall, we need a tool that (R1:) generates different
kinds of anomalies, and (R2:) includes tuning knobs to
vary the severity/degree of these anomalies. TSAGen meets
all the above two requirements. With the data generated
with TSAGen, we can easily test whether or not a detec-
tor can capture the correlation between observations (i.e.,
p(xt|x1:t−1)) or the long term patterns of observations (i.e.,
p(xt−w:t|x1:t−w−1)). In addition, since we know the underline
model parameters impacting the generated data, we can easily
test the performance of a detector and find the root causes of
the performance change. Aligning with R1 and R2, we innova-
tively introduce anomalies into two categories: non-structural
anomaly and structural anomaly. The former are generated
by superposition of patterns pre-defined by users, and the latter
are special types of anomalies that cannot be generated by
adding pre-defined patterns. The latter category can be further
classified into shape-based anomalies and statistical moment-
based anomalies.

(1) Non-structural anomaly is the most common kind of
anomalies and is characterized by at least one abnormally high
or low value inside it. Non-structural anomalies are usually
related to external events, e.g., an attack, and persist until the
external event ends. Such events usually can be modeled with
pre-defined patterns. As shown in Fig. 6, the anomaly can
appear in the form of a point or segment. Sometimes it can
also be context-relevant, for instance, an attack does not result
in a significant increase in the KPI value, but the value is much
higher than values at the same time of past days. To detect a
non-structural anomaly, an algorithm at least needs to model
p(xt|x1:t−1), where xm:n represents a continuous subsequence
(of length n−m+ 1) in KPI x.

(2) Structural anomaly is characterized by the change in
the inherent structure of KPI, e.g., cycle shapes, cycle length
or statistical moments. This kind of anomalies is more difficult
to detect since they can appear in various forms. Depending
on the component they occur, this kind of anomalies can
be generally classified into shape-based anomalies (which
occur in seasonal component) and statistical moment-based
anomalies (which occur in noise component). In this case,
modeling p(xt|xt−1) usually does not work well. To detect
this kind of anomalies, an algorithm at least needs to efficiently
model p(xt−w:t|x1:t−w−1).

Rationale for the above classification: There are no indus-
trial standards when comparing the performance of different
anomaly detection algorithms. The commonly-used metrics,
such as accuracy, recall, precision, only disclose the perfor-
mance of a detection algorithm w.r.t. a certain KPI data. As
the statistical features of KPI vary, the relative performance
of different detection algorithms may change [34]. In this
sense, we believe the best way to objectively evaluate a
detection algorithm is to evaluate whether or not it can cap-
ture the underline statistical feature changes. In other words,
a detection algorithm inherently has the capability of data
modeling, and as such we should evaluate their performance
by testing their modeling capability. Our classification of
anomalies facilitates such test. For instance, an algorithm
that only models p(xt|xt−1) is unlikely to detect a structural
anomaly, and an algorithm that models p(xt−w:t|x1:t−w−1)
might not work well on non-structural anomaly. As we will
see in Section VI-H, using this classification we can effectively
distinguish detection algorithms by their modeling capability.

Note that it is impossible to pre-define all anomaly patterns
in production environment, since they might be related to
unknown attacks or faults. We do not aim at pre-defining
all possible forms of anomalies, but try to present a set
of commonly-known anomaly patterns and enable users to
define new types of anomalies at the same time. In addition,
with TSAGen’s modular design, users can use it to easily
generate new patterns that are unknown to current production
environment (i.e., what-if test).

B. Implementation of Anomaly

Fig. 6: Non-structural anomaly templates found by Label-Less [2], where m
is the length of the template and c is the number of similar anomalies.

(1) Non-structural anomaly. Inspired by Zhao et al. [2],
we find that despite various forms of non-structural anomalies,
the shapes of the anomalies themselves are relatively stable.
Fig. 6 shows all anomaly templates retrieved from four datasets
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by Label-Less [2] with a high recall, where m is the length
of anomalies and c is the number of similar anomalies. It
is easy to find that the diversity of non-structural anomalies
is due to the various length, degree, and the complexity of
the context. In addition, most non-structural anomalies can be
characterized as the superposition of several known patterns.

b(x)a(x) h

ε1 ε2

(a) Anomaly pattern of Type I

h1 h2

ε

(b) Anomaly pattern of Type II

Fig. 7: Pre-defined patterns for non-structural anomaly.

According to this observation, we try to define and imple-
ment non-structural anomalies based on their shape, so that
more anomalies can be covered with little effort. As we will
see below, a variety of non-structural anomalies can be derived
from our predefined patterns.
• As shown in Fig. 7 (a), anomaly pattern of type I is

defined as:

Γ1(ε1, ε2, h, a, b, x) =

{
a(x) 0 ≤ x < ε1

b(x) ε1 ≤ x ≤ ε1 + ε2

where ε1, ε2 ∈ N, ε1 + ε2 6= 0, h ∈ (−∞, 0)
⋃

(0,+∞),
x ∈ {0, 1, 2, . . . , ε1 + ε2}. a(x) is the ascent curve,
which indicates how fast an anomaly comes; b(x) is the
attenuation curve, which indicates how fast an anomaly
goes away. Here we make a(x) an exponential function
and b(x) a negative exponential function, which are
expressed as follows:

a(x) = h× e−
ln β
ε1
×(x−ε1)

b(x) = h× e
ln β
ε2
×(x−ε1).

Since ∀x ∈ R, a(x), b(x) 6= 0, we use β = b(ε2)/h to
represent the error. Usually, β = 1/10000 is acceptable.
a(x) and b(x) can also be linear or polynomial according
to the need. The degree of this kind of anomaly is
represented by h.

• As shown in Fig. 7 (b), anomaly pattern of type II is
defined as:

Γ2(ε, h1, h2, x) =
h2 − h1
ε− 1

× x

where ε ∈ N+, ε ≥ 2, h1, h2 ∈ [−∞,+∞], |h1| +
|h2| 6= 0, x = [0, 1, 2, . . . , ε]. This kind of anomalies are
considered to occur suddenly. The degree of this kind of
anomaly is represented by max(|h1|, |h2|).

Users can generate a specific anomaly by giving parameters
of a pattern, e.g., anomaly pattern of Type I with h = 1, ε1 = 1

(a) Non-structural anomalies derived from pattern I

(b) Non-structural anomalies derived from pattern II

Fig. 8: Non-structural anomalies generated by our approach.

and ε2 = 1 is essentially a point anomaly. They can also obtain
a variety of anomalies by randomly varying the parameters of
the patterns. Comparing Fig. 6 and Fig. 8, we can see that
anomalies generated by our approach can cover most of the
templates showed in Fig. 6.

(2) Structural anomaly. This type of anomaly can occur
in any component, such as deformation of a cycle in multi-
seasonal component, and change of statistical moment of
noise component. Therefore, it is very difficult to pre-define
all patterns for this kind of anomalies in advance. But we
can still use TSAGen to cover some representative structural
anomalies. Here we mainly consider two typical structural
anomalies, which are shape-based and statistical moment-
based, respectively. Shape-based structural anomaly is charac-
terized by the deformation of cycle shapes; statistical moment-
based structural anomaly is characterized by the change of
statistical moment. Thanks to RMDF and Pearson distribution
applied in TSAGen, we can easily implement the above two
types of anomalies. For shape-based anomaly, we specify a
smaller forking depth for all normal cycles, and generate an
anomaly cycle by specifying a much larger forking depth. For
statistical moment-based anomalies, we randomly change the
statistical moment of a segment in the noise component and
label this segment as an anomaly.

Fig. 9 (a) shows an example of shape-based anomaly. We
can see that the shape of the anomaly cycle (colored in red)
is significantly different from the normal part (blue). Fig.9 (b)
shows an example of statistical moment-based anomaly. It is
easy to observe that the anomaly segment significantly differs
from the normal part.

C. Degree of Anomaly

To provide a tuning knob to vary the severity of anomalies,
another challenge we confront with is how to determine the
degree of anomaly. This problem concerns the quality of
ground truth. Anomalies of high degree can be detected easily,
while anomalies of low degree (e.g., small fluctuations) may
be hard to detect. Clearly, the degree of anomalies depends on
specific context. For instance, in a fluctuating environment, an
anomaly usually has a large fluctuation, while in a stationary
environment a small fluctuation may also be an anomaly.
Therefore, to control the “quality” of anomalies, it is necessary
to establish the relationship between anomaly degree and
context.
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(a) An example of shape-based anomaly
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(b) An example of statistical moment-based anomaly

Fig. 9: Examples of structural anomaly.
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Fig. 10: Low probability boundaries. Regions above the upper dashed
line or below the lower dashed lines are called low probability regions.

(1) Degree of non-structural anomaly. Anomalies are
usually rare events. Empirically, the higher the degree of an
anomaly, the rarer it is. Thus, with respect to non-structural
anomaly, our problem can be expressed as follows. Given
a context x (essentially a KPI segment), xi is an instance
inside x, uq, lq denote the upper-bound and lower-bound,
respectively, uq,i, lq,i represent the corresponding bit in upper-
bound and lower-bound for xi, respectively. Can we find
a uq s.t. ∀xi, p(xi > uq,i|x) < q, as well as a lq s.t.
∀xi, p(xi < lq,i|x) < q, where q is a desired small threshold?

Fortunately, this problem has been solved by Siffer et
al. [41]. They successfully applied Extreme Value Theory
(EVT) [42] and showed the power of EVT. As a widely-used
tool, EVT can estimate the probability of rare events by fitting
an Extreme Value Distribution (EVD) for the distribution
tail of the context. That is to say, given a probability q,
we can estimate a low probability boundary for the context,
meaning that it can figure out to what degree a non-structural
anomaly is rare enough to be a true anomaly. Here we applied
the approach described in [41] to establish low probability
boundaries and make non-structural anomalies fall into the
low probability regions to ensure the quality of ground truth.
As shown in Fig. 10, the upper dashed line is uq , the lower
dashed line is lq . Regions above uq or below lq are called low
probability regions.

Here we also call the probability q as the risk. It represents
the risk that an anomaly is not a true anomaly, since as q
decreases, injected anomalies are more and more likely to
be true anomalies. By tuning the q value, we can control
the quality of ground truth. In practice, we should carefully
tune the q value. For instance, the anomalies can be detected
easily if q is an extremely low value. In this case, most
detection algorithms will perform well, and the generated
data are not very useful for distinguishing the performance
of different algorithms. According to our evaluation (refer to
Section VI-F), when q = 1e-3, the performance of benchmark
algorithms are most closest to their performance on real data.

(2) Degree of structural anomaly. For this type of anomaly,
it is hard to explicitly define its degree due to its diverse forms.
Instead, we implicitly define the degree of structure anomaly

by adjusting parameters in different cases. For shape-based
anomaly, we make sure that the forking depth of the anomaly
cycle is much larger than the normal part (i.e., d − 3 ≤ d̂ ≤
d− 1, as presented in Section VI-E); For statistical moment-
based anomaly, we make sure that the statistical moments of
anomaly segments change significantly enough.

Point-adjust [1] is a widely-used strategy in the evaluation
of detection algorithms. Its core content is as follows: if
any point in an anomaly segment in the ground truth can
be detected by a chosen threshold, we say this segment is
detected correctly, and all points in this segment are treated
as if they can be detected by this threshold. In this case,
if a structural anomaly happens to contain an extreme high
or low value, it will be easily detected by an algorithm that
only models p(xt|x1:t−1). This does not help to distinguish
different detection algorithms. To avoid this problem, we use
EVT to ensure that the value of structural anomaly does
not fall in the low probability region, resulting in structural
anomalies that are easily detectable. In this way, we can
control the quality of structural anomaly.

VI. EVALUATION

In this section, we start by introducing the datasets, detec-
tion algorithms, and metrics used in our experiment. To esti-
mate the effectiveness of TSAGen, we display KPI generated
by TSAGen and KPIs from public datasets and show their
visual similarity. Then we show the effectiveness of RMDF
forking through experiments and also evaluate the computa-
tional overhead of TSAGen. In the last, we demonstrate the
validity of generated data as well as the usefulness of TSAGen.

A. Datasets

There are several open access datasets for anomaly detec-
tion, such as Yahoo, NAB, AIOps challenges (for simplicity
we call it AIOps in the rest of this section). Yahoo and
NAB both contain synthetic data and real data while AIOps
only contains real data collected from different IT companies
including Tencent, eBay, etc. The details of these datasets can
be found in the related papers [12]–[14].
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B. Benchmark Algorithms

We use 4 representative detection algorithms in our exper-
iments: MA [43], AKDE [44], Donut [1], and DDCOL [8].
MA is a traditional statistical method. AKDE and DDCOL
are unsupervised learning methods. Donut is unsupervised
learning method and has the ability to leverage anecdotal
labels. Detailed descriptions of the above algorithms are in
related papers [1], [8], [43], [44]. In order to better measure
the performance of a target algorithm (i.e., any detection
algorithm under investigation), the above four algorithms are
also integrated into TSAGen as benchmark algorithms. Users
can always optionally get the performance of these algorithms
on their customized data for comparison.

C. Metrics

Most of the evaluation methods for time series generation
are to measure the similarity between generated data and real
data based on a distance measure. This may be misleading
in KPI anomaly detection domain, since our ultimate goal is
to evaluate the detection algorithms rather than simulate the
data. Therefore, we use the performance ranking of benchmark
detection algorithms on the generated data to measure the
effectiveness of generated data. If the relative performance
rankings of benchmark algorithms on the generated KPIs and
similar real KPIs are close, we can conclude that the generated
data is valid, and thus it is reasonable to expect that if the
performance of an algorithm is improved on the generated
data, its performance will also be improved on similar real
data.

Next we introduce the performance metrics. F-score, pre-
cision and recall, whose definition can be found in [1],
are widely used for evaluating the performance of detection
algorithms. For the judgement of true positive (TP) number,
false positive (FP) number and false negative (FN) number,
we adopt the strategy used in AIOps challenges [14]. We will
rank benchmark algorithms by their F-score.

D. Intuitive Illustration and Synthetic Benchmark

To visualize the effectiveness of generated data, we display
a KPI generated by TSAGen. Synthetic KPI from Yahoo
and NAB datasets as well as real KPI from AIOps are
also displayed for visual comparison. As shown in Fig. 11,
compared with the synthetic data from Yahoo and NAB, data
generated by TSAGen contains drift, normal shape differences,
and context-relevant anomalies and is more similar to the
real KPI from AIOps. More examples can be found in the
generated Benchmark introduced below.

To help users quickly grasp TSAGen, we use TSAGen
to generate a synthetic benchmark, namely TSABen, which
includes typical use cases for algorithm comparison and eval-
uation. The details are as follows.

The first group can be used for evaluating the algorithm’s
resistance to interference (e.g., noise level, drift degree). We
generate this group in a variable control way. Taking the noise
level case as an example, we generate 100 KPIs. In these KPIs,
except for the noise level, all other parts of the data are exactly
the same, including the location and degree (controlled by r)
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Fig. 11: Real KPI and synthetic KPIs generated by TSAGen, Yahoo, and
NAB. Anomalies are labelled in red color.

of anomalies, while the variance of noise increases over the
order of KPIs.

The second group is used for evaluating the ability of
the algorithm to detect different anomalies. In this group,
we use TSAGen to inject only one anomaly to each KPI.
According to our classification, there are two subgroups in this
group, corresponding to, p(xt|x1:t−1), p(xt−w:t|x1:t−w−1),
respectively, each subgroup contains several concrete types of
anomalies. By running detection algorithms on this group, we
can test their modeling capability (refer to Section V-A for the
explanation of modeling capability of a detection algorithm).
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Fig. 12: With the increment of forking depth, the DTW cost (a) and RMSE
(b) between contrast and forking curves get larger and larger.

E. Effectiveness of RMDF forking

To show the effectiveness of RMDF forking, we randomly
generate 1000 contrast curves (of length 1000) with d = 10,
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Fig. 13: Two-dimensional t-SNE visualization with perplexity= 100 of the
generated curves. The embeddings of cognate curves are clustered together,
while non-cognate curves are distinguishable. After adding curves with larger
forking depth, the embeddings are not distinguishable.

and for each contrast curve, we generate 9 forking curves for
contrasting, with forking depth d̂ range from 1 to d− 1. Then
we plot the Dynamic Time Warping (DTW) cost [45] and Root
Mean Squared Error (RMSE) between each contrast curve and
their corresponding forking curves, as shown in Fig. 12. Note
that we remove the top 5% outliers because the RMDF process
has randomness. It is possible that some generated curves
might have a quite different shape. In practice, users can reject
these “bad” curves, i.e., users can configure an accept interval,
and only those forking curves whose DTW cost (or any other
distance metric) fall in the interval will be accepted.

To further demonstrate the good characteristics of RMDF
forking in modeling seasonal components, we randomly gen-
erate 20 curves (of length 1000, with d = 10) as well as
their corresponding forking curves, with d̂ range from 1 to
d − 4. The cognate curves (i.e., curves whose mutual shared
depth d̂ ≥ 1) are labeled as the same group, and non-cognate
curves (i.e., curves whose mutual forking depth d̂ = 0)
are labeled as different groups (corresponding to different
colors in Fig. 13). Then we use t-SNE [46] to visualize the
generated curves. As shown in Fig. 13(a), we can see that
the curves of the same group are clustered together, although
they have different shapes, and the curves of different groups
are pushed away from each other. On this basis, we add
the forking curves whose forking depth range from d − 3 to
d− 1, and again, visualize these curves by t-SNE. As shown
in Fig 13(b), all the curves can not be clustered well after
adding the curves with larger forking depth. This is because
the curves with a large d̂ are so different that by t-SNE it is
hard to tell which group they should belong to, indicating that
these curves are different enough for the purpose of anomaly
detection. The experimental result implies that RMDF forking
can effectively model the small shape difference between
cycles when 1 ≤ d̂ ≤ d − 4, and the generated curves can
be deemed as anomalies when d− 3 ≤ d̂ ≤ d− 1.

F. Validity of Generated Data

In this experiment, we select seven similar seasonal KPIs
from AIOps as a mini dataset, named Real. Then we calculate
the proportion of all kinds of anomalies (shown in Table II).
Also, we retrieve time series features θ1−θ9 for every KPI in

Real. Here we do not use meta features because the number
of KPIs in Real is relatively small. Since the amplitude drift
of the season in Real is small, and the frequency has almost
no drift, we set k1 = 0.5, k2 = 0.1 and set the recursion depth
d = 10. Then we generate a new dataset (named Synthetic)
similar to Real using these features. The proportions of each
type of anomalies are listed in Table II.

In this experiment, benchmark algorithms will be executed
on real and synthetic data respectively, we also adjust risk
q during the experiment to show the the performance of
benchmark algorithms under different quality of anomalies, so
as to show the effect of q. Note that there is no randomness
in the processes of MA and AKDE. Given the parameters,
the result of each execution will be the same. However, there
is randomness in the process of Donut and DDCOL, so we
run them ten times on every KPI and get their average perfor-
mance for ranking. In addition, the parameters of benchmark
algorithms are optimized to achieve their best performance.

The experimental results are shown in Table III. The results
show that the relative ranking of selected algorithms is roughly
the same on the generated dataset and real dataset: Donut is
always of the best performance on all experimental data and
AKDE is always of the baddest performance, DDCOL slightly
outperforms MA except in Synthetic with q = 1e-3.

We also calculate the Pearson correlation coefficient be-
tween the relative rankings of selected algorithms on the
four datasets we used, for F-score, Precision, and recall,
respectively. As shown in Fig. 14(a), there is a strong positive
correlation between relative rankings of F-score, and the same
is true for relative rankings of Precision (Fig. 14(b)). Fig. 14(c)
shows that there is also a strong positive correlation between
relative rankings of Recall, except when q = 1e-5. This is
because most of the anomalies in the experimental data are
point anomalies (beat, spike, dip). When q = 1e-5, the degree
of anomaly is relatively high, resulting in a high 2D-difference
(i.e.,(xt−xt−1,xt−xt−2)) in anomaly points. DDCOL is more
sensitive to this change, so its recall increases faster with the
increment of r. Note that the color bar of Fig. 14 (a) and (b)
start from 0.9, and (c) from −1.0.

The experimental results indicate that when the generated
data meet some conditions (i.e., the proportion of all kinds
of anomalies is the same and their degree is similar), the
generated data are effective and can be used for evaluating
the performance of detectors. We can also infer that if the
performance of an algorithm is improved on the generated
dataset (satisfying the conditions), the performance of the
algorithm will also be improved on real dataset.

G. Computational Overhead

TSAGen has only two time consuming processes in its
workflow: the RMDF process and the EVT fitting process.
Other parts of computation can be neglected compared to the
above two processes (as we will see below). The computation
time of EVT fitting depends on the length (i.e., θ5/θ4) of
generated time series, while the computation time of the
RMDF process mainly depends on the cycle number (i.e.,
θ4). Note that θ1 ∼ θ3, θ6 ∼ θ9, k1 do not impact the total
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TABLE II: Proportion of all kinds of anomalies in the selected KPIs

ID beat spike dip fluctuate level shift total Anomaly points Total points anomaly portion

1 11 2 38 7 0 58 654 100254 0.65%
2 13 0 49 10 0 71 1087 147629 0.74%
3 3 2 49 12 0 66 1113 147668 0.75%
4 9 1 51 3 0 64 426 147689 0.29%
5 22 2 50 1 0 75 381 137925 0.28%
6 6 1 39 4 1 51 527 129453 0.41%
7 13 2 45 4 0 64 584 147680 0.40%

TABLE III: Performance of benchmark algorithms on real data and synthetic data with different risk q.

Method
Synthetic with q=1e-5 Synthetic with q=1e-4 Synthetic with q=1e-3 Real

F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall

simple MA 0.7936 0.8239 0.7654 0.6386 0.5634 0.7370 0.5916 0.6812 0.5229 0.5765 0.9556 0.4127

Donut 0.9234 0.9314 0.9110 0.7915 0.8131 0.7692 0.6225 0.7847 0.5102 0.5944 0.8968 0.4442

DDCOL 0.8334 0.7538 0.9304 0.6624 0.6596 0.6602 0.5542 0.6954 0.4613 0.4520 0.9761 0.2918

AKDE 0.0128 0.0064 0.8827 0.0122 0.0061 0.8348 0.0096 0.0048 0.7577 0.0168 0.0085 0.6170
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Fig. 14: Pearson correlation between relative rankings on F-score, Precision, Recall.

computation time because these parameters do not affect the
length and cycle number of generated time series. k2 has a
small impact on the generated KPI, on average, incerasing k2
is essentially equivalent to increasing the expected cycle length
(i.e., 1/θ4) of generated KPIs.

Thus we control θ1 ∼ θ3, θ6 ∼ θ9, k1, k2 as constants,
make d = 10, d̂ = 2, θ4 = 1/200 and vary θ5 to generate
KPIs of different length and cycle numbers. In this way,
we can observe the influence of length and cycle number
on the computation time. To ease illustration, we divide the
overall computation time into three parts: time of the RMDF
process, time for the EVT fitting process, and time for other
processes (e.g., trend/noise generation, and anomaly injection).
The hardware is a 1.8GHz, 16G RAM PC running Windows
10.

As shown in Fig. 16, with the increment of cycle number
(θ5) and length (θ5/θ4), the overall computation time increases
linearly. Generating a long KPI of length 100, 000 only take
about 55 seconds. This is acceptable because TSAGen works
in an offline fashion. We can also find that EVT fitting and
RMDF are the two most time-consuming processes, and time
consumed by other processes can negligible.
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Fig. 15: Computation time of TSAGen. With the increment of cycle number
(θ5) and length (θ5/θ4), the overall computation time increases linearly.

It is worth noting that the computation time of benchmark
evaluation depends on the execution time of benchmark algo-
rithms. We only evaluate the computation time of the gener-
ation stage. The computation time of benchmark algorithms
can be found in related papers [1], [8], [43], [44].

H. Results on TSABen

We also test the benchmark algorithms on TSABen. Here
we selectively report some interesting results. In this experi-
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Fig. 16: Results on TSABen.

ment, we re-use the settings of benchmark detectors used in
Section VI-F, and run them on TSABen’s second group.

As shown in Fig. 16, MA and Donut have good per-
formance on non-structural anomaly and structural anomaly.
DDCOL only performs well on non-structural anomaly, but
its performance on structural anomaly is extremely poor.
AKDE contrasts DDCOL in that AKDE has bad perfor-
mance on non-structural anomaly but good performance
on structural anomaly. Note that because the proportions
of anomalies in TSABen, Real, and Synthetic are dif-
ferent, the detector’s performance will be slightly different
from what we show in Table. III. The above result im-
plies that MA and Donut can both model p(xt|x1:t−1) and
p(xt−w:t|x1:t−w−1); DDCOL can only model p(xt|x1:t−1),
but failed to model p(xt−w:t|x1:t−w−1); AKDE can effectively
model p(xt−w:t|x1:t−w−1), but has a limited power in model-
ing p(xt|x1:t−1). It is worth noting that long-term anomalies
contribute the most to the F-score of AKDE on the non-
structural anomaly, and AKDE is very weak in detecting point
anomalies. This experiment is also cross-validated with the
previous experiment. The reason that AKDE performs poorly
in Table III is because most of the anomalies in the four
datasets we used in Section VI-F are point anomalies.

Inspecting related papers [1], [8], [43], [44], we find that
DDCOL is specifically designed for detecting abrupt changes
and it does not consider the context (i.e., the previous be-
havior) at all. It only models p(xt), thus it only works well
on point anomalies. MA can model p(xt|xt−w:t−1) by using
a sliding window of size w, thus it can detect structural
anomalies, but its performance is not that good. AKDE can
only model p(xt−w:t), and is not sensitive to point changes.
Only Donut models p(xt−w:t|x1:t−w−1) in its design and thus
it works well on both structural and non-structural anomalies.
While there is no framework that unifies the design of these
algorithm, the above analysis offers an intuitive explanation
for the phenomenon shown in Fig. 16. The lesson we have
learned from this experiment is that it is necessary to model
the context for better detection results.

VII. DISCUSSION

Usefulness and positioning: Synthetic data from TSAGen
should not be treated as a substitute or replacement of real-

world datasets. Instead, TSAGen generates complementary
datasets for what-if tests in the following ways. First, since
it is hard to control the characteristics of real data, developers
and operators can conduct variable control evaluations with
the help of TSAGen. This enables practitioners to easily
discover the influences of a specific factor on the performance
of detectors. Second, running the detectors on the generated
data can yield a lot of meaningful results, just as we did in
Section VI-H. With the help of TSAGen, operators and devel-
opers can evaluate the modeling capability of the detectors and
discover if the detectors have fatal defects before deploying
them in production.

Tractability: Although TSAGen has many parameters,
TSAGen is easy to learn and use due to its modular design.
By varying a parameter and fixing other parameters at a
time, users can easily find the influence of a parameter on
the generated data. TSAGen is fast, e.g., it takes less than 8
seconds (refer to Fig. 15) to generate a KPI of length 10, 000.
Hence, users can quickly learn how to use TSAGen in an
interactive way, i.e., tuning a parameter and getting feedback
on the generated data immediately. Moreover, the synthetic
benchmark TSABen contains many examples, each provided
with a picture to illustrate its shape. Users can also learn the
effect of parameters with TSABen.

Model selection: We used heuristics rather than some
advanced co-training deep generative models (e.g. GANs and
VAEs) [31], [32]. This decision is based on much deliberation
over cons and pros. First, it is unlikely to conduct variable
control generation with GANs, since it is extremely hard to
vary a characteristic without distorting other characteristics of
the KPI when using GANs. Second, GANs and VAEs are more
suitable for simulating existing data, but not for conditional
generation. Furthermore, these models can easily suffer from
mode collapse [47]. The main goal of GANs is to reproduce
data indistinguishable from the training data. This mismatches
the purpose of what-if tests where we need the flexibility of
controlling the statistical patterns in an interpretable manner.

VIII. CONCLUSION AND FUTURE WORK

AIOps uses big data analytics and machine learning tech-
nologies to automatically identify and resolve IT operational
issues. In its core, KPI anomaly detection plays a critical role.
Nevertheless, due to security and privacy concerns, new KPI
anomaly detection algorithms lack enough KPI datasets that
consist of various anomalies for testing their performance.
We fill this urgent need by developing TSAGen, a tool that
can easily generate synthetic KPI data with various anomalies
with simple control parameters. With TSAGen, researchers
and practitioners can perform comprehensive evaluation of
KPI anomaly detection algorithms as well as build what-if
scenarios.

Since the data generated with TSAGen are not real, the
data may not be suitable for directly training machine learning
models, but they can be used for transfer learning. This
will be investigated as our future work. Also, since single
method is not possible to detect all types of anomalies, we
plan to evaluate various detection algorithms with KPI data
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generated with TSAGen and selectively integrate them for
better detection results. In addition, due to the good properties
of RMDF forking in generating shapes, the KPI data generated
by RMDF forking may also be used to evaluate shape-based
time series clustering. This remains to be further researched.
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