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Point-of-Interest (POI) recommendation is significant in location-based social networks to help users discover new locations
of interest. Previous studies on such recommendation mainly adopted a centralized learning framework where check-in
data were uploaded, trained and predicted centrally in the cloud. However, such a framework suffers from privacy risks
caused by check-in data exposure and fails to meet real-time recommendation needs when the data volume is huge and
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framework for POI recommendation. It decouples the recommendation into two parts. Firstly, to protect privacy, users train
local recommendation models and share multi-dimensional user-independent parameters instead of check-in data. Secondly,
to improve recommendation efficiency, we aggregate these distributed parameters on edge servers in proximity to users (such
as base stations) instead of remote cloud servers. We implement the PREFER prototype and evaluate its performance using
two real-world datasets and two POI recommendation models. Extensive experiments demonstrate that PREFER strengthens
privacy protection and improves efficiency with little sacrifice to recommendation quality compared to centralized learning. It
achieves the best quality and efficiency and is more compatible with increasingly sophisticated POI recommendation models
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1 INTRODUCTION

1.1 Motivation
Location-based social networks (LBSNs), such as Foursquare, Gowalla and Wechat, have been very pervasive
nowadays [16]. Point-of-Interest (POI) recommendation is one of the major tasks in LBSNs, which suggests new
interesting locations to users by extracting user preference and location popularity from their historical check-in
activities [53]. It not only significantly saves our effort in exploring new places (e.g. restaurants [35]) most likely
to match personal interests for our weekends or vacations, but also benefits newly opened places to find their
target customers for advertising[53].

Previous works on POI recommendation [14, 21, 52] mainly focus on building strong recommendation models
to achieve high recommendation quality. Various POI-related factors, such as location category, distance, time and
social relationship, are integrated into POI models. However, the whole recommendation procedure includes not
only model building but also data collection and recommendation presentation. Most works neglect the impact
of these two stages and simply adopt a centralized learning framework. As shown in Figure 1, user check-in data
are collected and uploaded to the cloud for model training and prediction. However, there exist substantial social
security risks and inefficiency problems elaborated as follows.
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Fig. 1. POI recommendation procedure under centralized learning framework

• Privacy risk: Location-aware social data are highly sensitive. With these data obtained online, criminals and
stalkers could easily speculate on the scope of victims’ daily activities and the places that attract victims to
go in the future, and then spot and track victims at these locations [4, 7].
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• Inefficiency problem: Data collection and recommendation presentation are heavily dependent on network
quality. When the network bandwidth between users and the cloud is limited and unstable, such as in an
overcrowded attraction during holidays, the latency to send recommendation requests and receive feedback
is always unacceptable. Besides, in the model building stage, the cloud suffers from high carbon footprint
and energy cost on recommendation service platforms during peak periods [42].

Aware of the privacy risks, existing works have applied data encryption mechanisms, such as k-anonymity
[38] and differential privacy [3], to enhance privacy protection. But they have the following limits:
• Data exposure: When applying data encryption mechanisms in geographical data, the effectiveness of
preventing data exposure dynamically fluctuates with environmental factors. For example, suppose you
are on an island, the noised location information shows that you are in the middle of the sea now. It hardly
prevents the attacker from obtaining your real locations.
• Inefficiency: These solutions need to take extra time to add noise to their check-in data. And they still
cannot get rid of the dependency on network quality when uploading these noised data to the cloud.
• Incompatibility: All of them evaluate the effect of noise on performance only using the most basic recom-
mendation model, matrix factorization method. In our follow-up experimental study, we found that the
performance degradation is quite different when different models are used. The evaluation should keep
pace with the development of recommendation models. The recommendation system should be designed
to be compatible with different models.

1.2 Our Contribution
In view of these limits, we propose PREFER, an edge-accelerated federated learning framework for POI rec-
ommendation. Following the federated learning paradigm [47], user data are kept and trained locally. Users
collaborate to construct a shared representing model by having their parameter updates aggregated round by
round. However, in the POI recommendation scenario, some model parameters are still of high sensitivity to be
shared, based on our comprehensive investigation and analysis on the POI recommendation models [11, 14, 21].
In particular, most models are based on the matrix factorization method, which decouples the recommendation
matrix into user latent matrix and location item latent matrix. Then time&distance-related matrices are intro-
duced and analyzed by the promising artificial intelligence technology. They enrich the dimension of POI models
and improve recommendation quality. Given that the user latent matrix is extremely sensitive, PREFER shares
multi-dimensional user-independent parameters, i.e., item latent matrix, time&distance-related matrices and the
weights of model among users, while keeping user latent matrix at local. Thus, different from existing federated
learning , PREFER is customized for the POI recommendation setting which further enhances privacy protection.
With respect to improving efficiency, we further propose to aggregate user-independent parameters close

to mobile users. Traditional federated learning performs the aggregation in the remote cloud, causing large
network consumption and high latency. Nowadays, the resource capability at the network edge has been gradually
strengthened. Thus, edge computing is proposed to leverage such edge resources to reduce the transmission
distance and improve real-time response capability [23, 25]. Operator China Telecom has officially launched the
pilot project of edge computing nationwide and the scale construction of thousands of edge data centers [40].
Edge data centers are close to mobile users and often co-located with base stations. The network bandwidth
is usually sufficient and stable, contributing to low request latency. And in the POI recommendation scenario,
people whose check-in data rarely intersect have very limited reference to each other’s location preference. Thus,
in our system, we propose to offload the aggregation tasks from the remote cloud to the edge server which can be
a server in an edge data center or a base station in a city or district. The edge server aggregates user-independent
parameters from users in the same region. Owing to user mobility, the edge server is able to capture enough
valuable information from these mobile users and provides high-quality and real-time recommendation service.
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The above design optimizes the privacy and efficiency issues in POI recommendation from the perspective of
the system framework. It does not require modifying the algorithm design when deploying POI models in our
framework. And note that since our discussions are for advanced POI recommendation models that consider
various POI-related factors, our framework is more practical and compatible with existing works on POI models.
We have implemented the prototype, conducted case studies on two advanced POI models (PRME-G [15] and
Distance2Pre [11]), and evaluated PREFER in recommendation quality, efficiency and compatibility.
The contributions of PREFER are summarized as follows:
• We propose a privacy-preserving federated framework for POI recommendation, especially to support
more multi-dimensional content aggregation. In this framework, we keep the sensitive check-in data
at local devices, assign these devices to build recommendation models in parallel, and then aggregate
multi-dimensional user-independent parameters to build a federated POI recommendation model.
• We propose an edge-based efficient POI recommendation scheme. We benefit from the proximity of the edge
server, and aggregate parameters in the edge server instead of the remote cloud to improve the real-time
responsiveness of the recommendation system.
• We customize two advanced POI recommendation models in PREFER. As far as we know, we are the first
to prove the recommendation system framework’s compatibility with existing advanced models.
• We implement the PREFER prototype and evaluate its performance using two real-world check-in datasets.
The results demonstrate that our proposal is compatible with these advanced models, and achieves the
state-of-the-art recommendation quality and efficiency without the exposure of check-in data.

The remainder of this paper is organized as follows. We review the background and related works in Section
2, followed by some related preliminaries in Section 3. We elaborate the core design of PREFER and two case
studies in Section 4. Finally, we evaluate the system in Section 5 and conclude in Section 6.

2 RELATED WORK
In this section, we first present the background of POI recommendation models, and then review the related
work about federated learning, edge computing and existing privacy-preserving recommendation systems.

2.1 Point-of-Interest Recommendation Model
Point-of-Interest recommendation problem has been extensively researched in location-based social network [53].
POI recommendation models always adopt matrix factorization to make recommendations [5]. The recommenda-
tion matrix could be composed of two matrices, user latent matrix and location item latent matrix. In this way, it
avoids the sparsity problem and improves the computation efficiency. Gradually, researchers study the use of
auxiliary POI-related information to enhance the POI recommendation model. Feng et al. and Cui et al. investigate
the geographical clustering phenomenon in users’ check-in activities [11, 14]. Hosseini et al. and Liu et al. argue
that the temporal influence also benefits recommendation performance since the user’s preference for check-in is
different when the user is in different temporal states [21, 27]. Griesner et al. combine geographical and temporal
influences into matrix factorization [17]. Cheng et al. and Zeng et al. suppose that friends share more common
interest in POI than non-friends, and make a recommendation with the consideration of social relationships
[10, 52]. Such multi-dimensional auxiliary information improves and complicates the recommendation matrix.
And with the development of machine learning, some promising methods, such as Recurrent Neural Network
[11], Markov Chain [15], are applied in the recommendation model to make better use of auxiliary information.

2.2 Federated Learning and Edge Computing
Federated learning is an emerging privacy-preserving distributed learning paradigm [47]. It has been applied in
some data privacy-sensitive areas. In 2019, Google has implemented the first product-level federated learning
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system [6]. Tens of millions of mobile phones have been adopted in the system to develop machine learning
models for on-device item ranking, new word prediction and so on. NVIDIA has announced to work with medical
institutions to build the first federated AI platform for medical diagnosis and drug researches [28]. Open-source
projects, such as Webank FATA[46], are released to support the federated AI ecosystem. In addition, Feng et al.
follow federated learning paradigm to predict human mobility and designs a group optimization method for the
training on local devices to achieve a trade-off between performance and privacy [13]. Samarakoon et al. and Lu
et al. design a distributed federated learning system for connected vehicles [29, 34].
Edge computing is becoming an important part of ubiquitous computing infrastructure in the Internet-of-

Things (IoT) era. Edge computing data centers are co-located with mobile access networks, connecting cloud and
end devices [23]. Delay-sensitive applications, such as AR/VR [37] and disaster relief applications [20], process
user requests at the edge to provide real-time services. Applications with large data transmission always suffer
from the limited backhaul capacity of the cellular core network. Hung et al. deploy live video streaming service in
an edge-enabled cellular system [22]. Qiao et al. build a joint content placement and content delivery in vehicular
edge caching network[32]. In terms of the privacy issues in edge computing, [49] has discussed it in detail. Xiao
et al. design a hierarchical edge computing architecture to provide smart privacy protection for video data storage
[48]. Intel also designs a series of edge security policies for the newly released HERO-X platform [2].

Recently some work has been conducted for the integration of the above two technologies. In-Edge AI [44] is
such an integration framework and greatly alleviates the privacy and efficiency issues in mobile edge computing,
caching and communication. Liu et al. propose a cloud-edge-end hierarchical federated learning system which
allows edge data centers to perform partial model aggregation and release the aggregation burden in the cloud
[26]. Guo et al. also propose a three-tier system but assigns edge data centers to execute the partial training
tasks from the terminals [18]. On the basis of these frameworks, many researchers have further carried out some
module optimization. Nishio et al. [31] and Ye et al. [51] design novel client selection algorithms for federated
learning. They allow the edge data center to aggregate as many client updates as possible from the heterogeneous
resources in mobile edge and accelerate the learning process. Wang et al. [43] adaptively adjust the number of
local training epochs and global aggregation rounds with the awareness of network dynamics and computation
resources on the end devices. Tao et al.[39] propose to exchange model parameters only when the changes of
parameters are above a certain threshold. In this way, the number of uploads of model parameters is reduced.
These works highly emphasize the importance and visibility of this integration. But they mainly apply to the
general machine learning models whose parameters are less sensitive. For POI recommendation, some model
parameters are still highly sensitive to be shared and the recommendation presents a certain locality, that is,
people whose check-in data rarely intersect have very limited reference to each other’s location preference while
people who are active in the same region have relatively strong references. As far as we know, the edge-based
federated learning system for POI recommendation remains unexplored.

2.3 Privacy-preserving Recommendation System
Privacy leakage has great social security risks. The recommendation system usually needs to obtain the user’s daily
access data, such as product browsing records and location check-in data, and then extract the user’s preference
features and item’s rating features. Existing recommendation systems mainly focus on how to accurately extract
useful features to improve recommendation performance, but neglect the potential privacy issues. Protection
mechanisms, such as k-anonymity [38], l-diversity [30], and t-closeness [24], are applied. k-anonymity screens
the true location by the other neighboring k-1 users’ dummy locations. But when these users are in the same
location, the location privacy is leaked. Then l-diversity is proposed to diversify query locations and prevent
attackers from identifying the true location from l-1 different locations. t-closeness further protects users’ location
privacy when different locations actually belong to very close types. Tu et al. designs an algorithm to generalize
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user trajectories to resist semantic attack and re-identification attack [41]. It meets the demands of the above
three mechanisms at the same time. Gao et al. and Andrés et al. adopt geographic differential privacy [3, 16] that
disturbs the real location according to a certain probability. It lacks the definition of adjacent datasets and adopts
geo-indistinguishability when extending traditional differential privacy into geography. Adjacent datasets refer
to a pair of datasets whose difference is reflected in a single sample. The probability that adjacent data sets get the
same output is used to evaluate whether the traditional differential privacy is satisfied. Geo-indistinguishability
defines a circle centered on the real location, and the closer the location point to the real location, the higher
the probability that it will be released as the noisy location point. These methods are easily affected by the
geographical environment factors and damage the recommendation quality. Su et al. apply differential privacy
and random perturbation to protect users’ relationship data when using these data as auxiliary information
[36]. It’s still unable to protect user geographic location data. Cao et al. highlight that urban morphology can
lead to location privacy leakage even when the person only simply reveals the nearby POI types [8]. Xu et al.
demonstrate that aggregated mobility data also cause individuals’ privacy breaches [50]. The aggregated data
here are always some basic statistics, such as the number of users with a certain region at a specific timestamp.
They are different from the aggregated model parameters in our paper.

Thus, some researches suggest keeping and training geographic location data on the user’s own device.
Specifically, Chen et al. propose a decentralized matrix factorization framework [9]. It decomposes the item latent
vector into global and personal vectors, and users share the global vector with their k-nearest neighbors and keep
the personal vectors locally to preserve privacy. But it is easy to cause low performance due to data sparseness.
Wang et al. apply a teacher-student training framework [42]. The cloud trains a teacher model from available
contextual data, and the end device trains a simplified student model with the teacher model. The collaboration
is unidirectional, that is, the teacher model cannot perceive the characteristics of the student model well. Dolui et
al. apply a federated learning framework [12]. The end devices upload both the user latent vector and the item
latent vector to the cloud. Wang et al. propose to learn user latent vectors based on user group preference instead
of individual user preference [45]. It makes these vectors less sensitive to be shared. Considering the sensitivity
of these vectors, the authors apply differential privacy or data anonymization mechanism. Hegedüs et al. also
propose a decentralized privacy-preserving recommendation framework [19]. But it still lacks the consideration
of the multidimensionality and analysis methods in the POI recommendation model.
Inspired by these works, we develop them in the following ways: 1) using federated learning paradigm and

sharing multi-dimensional user-independent parameters (including item latent matrices, time&distance matrices
and weights in some applied machine learning models) to optimize the collaboration among devices; 2) making
the edge server as the coordinator to efficiently aggregate the models of devices in the same region; 3) discussing
and evaluating the compatibility of our framework in different POI recommendation models, rather than only for
the simplest matrix factorization model. More design details would be given in Section 4. And we have compared
with some above related works in our evaluation, and summarized the differences in Table 3.

3 PRELIMINARY
In this section, we briefly overview the definition of POI recommendation and the essential concepts of the model.

Definition 1 (POI recommendation): POI recommendation is devoted to extracting the user preference from
their check-in data and then recommending a list of POIs that has never been visited by the user before.

Here we would first introduce two related terms, check-in activity and check-in sequence. Assume that 𝑈 and
𝐿 is the set of users and locations, respectively. Each item 𝑙 in the set 𝐿 has two basic geographical attributes,
longitude and latitude. A check-in activity is denoted by a triplet 𝑠 =< 𝑢, 𝑙, 𝑡 >, 𝑢 ∈ 𝑈 , 𝑙 ∈ 𝐿, which depicts
that user 𝑢 visited location 𝑙 at time 𝑡 . A check-in sequence is a set of user 𝑢’s consecutive check-in activities.
We denote this term as 𝑆𝑢 = {< 𝑙1, 𝑡1 >, < 𝑙2, 𝑡2 >, · · · < 𝑙 |𝑆𝑢 |, 𝑡 |𝑆𝑢 | >}. Based on users’ check-in sequences, POI
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recommendation would provide user 𝑢 with a series of POIs that have not been visited by user 𝑢 before but are
very likely to be visited in the near future.

Definition 2 (Matrix Factorization): POI recommendation could be regarded as a matrix completion task. As
shown in Figure 2, we represent users and location items as a two-dimensional matrix 𝐴 ∈ R𝑈×𝐿 and fill this
matrix with users’ check-in activities. If user 𝑢 has visited location 𝑙 , the value of 𝐴𝑢,𝑙 would be set as 1. The
matrix is usually extremely sparse for the limited check-in activity records and hard to fill the remaining blank
information. Matrix factorization is one of the most popular technologies used in recommendation systems.
Matrix 𝐴 can be the product of 𝑋 ∈ R𝑈×𝑘 and 𝑌 ∈ R𝐿×𝑘 . 𝑋 and 𝑌 denote the user and location item factor
matrices, respectively, and their column vectors 𝑥𝑢 and 𝑦𝑙 are the k-dimensional latent factors for user 𝑢 and item
𝑙 . In this way, it effectively gets rid of the data sparsity problem and improves the operation efficiency.

Definition 3 (Recommendation Model): POI recommendation models have been advanced with various POI-
related factors. It makes 𝐴 become a more practical and complex function, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋,𝑌, 𝐷, 𝑆,𝑊 ). 𝐷 and 𝑆 are
distance-related matrix and time-related matrix that represent the preference on distance and time in check-in
activities. Time-related matrix can also refer to the sequential matrix in some works to indicate the sequential
preference. When using some machine learning model to obtain 𝐷 and 𝑆 or making a trade-off between different
POI-related factors, some weights𝑊 are introduced in POI recommendation model.

Figure 2 presents the model building procedure in advanced POI recommendation. Check-in activity analysis
module is the core component. Based on historical check-in sequences, the corresponding user latent vector 𝑥𝑢
and item latent vector 𝑦𝑙 are fed into this module as input, and the distance interval between two sequential
check-in activities and the check-in time sequence are also calculated and fed as input with 𝐷 and 𝑆 . Various
methods, such as Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and Markov Chain (MC),
are applied to analyze these data. The weights of these models are stored in𝑊 . This module constantly revises
these parameters according to the designed loss functions. At last, the module outputs with the possibilities to
visit each unvisited location, and the ranking of unvisited locations is obtained.

1 1 1

1 1

? 1 ? 1

1

1 1

1 1

1 1 1

1 1

? 1 ? 1

1

1 1

1 1

= Function

POI recommendation 

matrix A (RU×L)

User matrix 

X (RU×k)

Location  matrix 

YT (Rk×L)
Check-in activity analysis

h0

R

s0

h0

R

s0

R

st

=

h1

R

s1

h1

R

s1

ht

R

st

h0

R

s0

R

st

=

h1

R

s1

ht

R

st

h0

R

s0

R

st

=

h1

R

s1

ht

R

st

ht h0

R

s0

R

st

=

h1

R

s1

ht

R

st

ht

1 1 1

1 1

1 1

1

1 1

1 1

1 1 1

1 1

1 1

1

1 1

1 1

Output with the possibility to 

visit each unvisited location

= 0.3 0.4 0.8 0.1? ?

1 1 1

1 1

? 1 ? 1

1

1 1

1 1

= Function

POI recommendation 

matrix A (RU×L)

User matrix 

X (RU×k)

Location  matrix 

YT (Rk×L)
Check-in activity analysis

h0

R

s0

R

st

=

h1

R

s1

ht

R

st

ht

1 1 1

1 1

1 1

1

1 1

1 1

Output with the possibility to 

visit each unvisited location

= 0.3 0.4 0.8 0.1? ?

Weights in 

analysis model W
Time  

matrix S

Time  

matrix S

Distance  

matrix D 

Distance  

matrix D 

Weights in 

analysis model W
Time  

matrix S

Distance  

matrix D 

Fig. 2. Advanced POI recommendation model building procedure

4 SYSTEM DESIGN AND CASE STUDIES
In this section, faced with the privacy risk and inefficient problem in POI recommendation, we propose PREFER,
a federated edge learning system. We first give an overview of the system framework, then describe each module
in the system in detail, and finally take two advanced recommendation models as case studies in our system.
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4.1 System Design
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Fig. 3. PREFER shows the distributed POI recommendation model building at the network edge without check-in data
transfer

The system overview is shown in Figure 3. Different with the typical centralized learning framework, we need
not collect and process user check-in activities in a centralized cloud. Instead, we keep these user data on their
local mobile devices. Thus, we directly step into the model building stage. In this stage, we leverage the computing
resources in mobile devices and edge servers to perform distributed model building at the network edge. And in
the recommendation presentation stage, we leverage the recommendation model in the mobile device to infer
the POI recommendation list for their owners. PREFER is featured with two special designs, namely local model
training and regional model aggregation. The two modules are deployed in distributed mobile devices and edge
servers, with the purpose of privacy protection and efficiency improvement respectively. We next describe the
details of each design in the following subsections.

4.1.1 Model Training at Distributed Mobile Devices. In this module, we propose to offload model building tasks
from the cloud to users’ own local devices. Each mobile device keeps user check-in sequences local and builds its
local recommendation model based on local sequences. The procedure is presented in Algorithm 1.
To begin with, the mobile device needs initialize its user latent vector 𝑥𝑢 or load local available 𝑥𝑢 (line 1-3).

Then it requests the nearby edge server to send location latent matrix 𝑌 , distance-related matrix 𝐷 , time-related
matrix 𝑆 and model weights𝑊 (line 4), more details would be given in the next subsection. These downloaded
parameters are used to initialize the local recommendation model in the device (line 5) and benefit the model
building for cold-start users. Considering different works adopt different data analysis methods and loss functions,
here we briefly denote the function of data analysis and loss calculation as𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 and don’t discuss their design
details in this subsection. In each epoch, each sequential pair of check-in activities performs function 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
with model parameter set {𝑥𝑢, 𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢}, and 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 returns the value of the loss for the corresponding
sequential pair (line 8-10). Then based on the gradient to the accumulated value of the loss, the model parameter
set {𝑥𝑢, 𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢} is updated with learning rate 𝜂 (line 11-12). When the number of epochs reaches the preset
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Algorithm 1: Local model training
Input: user check-in sequence 𝑆𝑢 = {< 𝑙1, 𝑡1 >, < 𝑙2, 𝑡2 >, · · · < 𝑙 |𝑆𝑢 |, 𝑡 |𝑆𝑢 | >}, local user vector 𝑥𝑢
Output: user-independent parameters {𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢}

1 if 𝑥𝑢 == 𝑁𝑢𝑙𝑙 then
2 initialize 𝑥𝑢 ;
3 download 𝑌 , 𝐷 , 𝑆 and𝑊 from the edge server in proximity;
4 𝑦𝑢 ← 𝑌,𝑑𝑢 ← 𝐷, 𝑠𝑢 ← 𝑆,𝑤𝑢 ←𝑊 ;
5 𝑙𝑜𝑠𝑠 ← 0;
6 for 𝑒𝑎𝑐ℎ 𝑒𝑝𝑜𝑐ℎ 𝑖 ∈ [1, 𝐸𝑝𝑜𝑐ℎ𝑠] do
7 for 𝑒𝑎𝑐ℎ 𝑐ℎ𝑒𝑐𝑘-𝑖𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 𝑙 𝑗 , 𝑡 𝑗 >∈ 𝑆𝑢 and 𝑗 ! = |𝑆𝑢 | do
8 𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 +𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (< 𝑙 𝑗 , 𝑡 𝑗 >, < 𝑙 𝑗+1, 𝑡 𝑗+1 >, 𝑥𝑢, 𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢);
9 𝑥𝑢 ← 𝑥𝑢 − 𝜂 · ▽𝑙𝑜𝑠𝑠 (𝑥𝑢);

10 𝑦𝑢 ← 𝑦𝑢 − 𝜂 · ▽𝑙𝑜𝑠𝑠 (𝑦𝑢), 𝑑𝑢 ← 𝑑𝑢 − 𝜂 · ▽𝑙𝑜𝑠𝑠 (𝑑𝑢), 𝑠𝑢 ← 𝑠𝑢 − 𝜂 · ▽𝑙𝑜𝑠𝑠 (𝑠𝑢),𝑤𝑢 ← 𝑤𝑢 − 𝜂 · ▽𝑙𝑜𝑠𝑠 (𝑤𝑢);
11 store 𝑥𝑢 at local;
12 return {𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢};

value 𝐸𝑝𝑜𝑐ℎ, that is, the model training is completed, we would keep and store sensitive user latent vector 𝑥𝑢
at local to protect user privacy (line 14). Distinct from other recommendation models, such as movie or book
recommendations, the distance and time factors are very important in POI-specific recommendation models.
Thus, for the availability and quality of POI recommendation models, we not only share the basic location item
latent metric 𝑦𝑢 , but also share the auxiliary parameters 𝑑𝑢 , 𝑠𝑢 and𝑤𝑢 (line 15).
In this way, the model building tasks are offloaded to the mobile devices, the user check-in data are kept at

the local devices without being transferred to the third party. It greatly strengthens privacy protection. Besides,
the efficiency in the model building stage is also improved because the amount of data in each mobile device is
relatively small compared to the numerous data collected by the cloud. However, the scarce and biased data in
one single device also results in very poor-quality recommendations. Faced with this problem, through analyzing
the composition of parameters in POI-specific model, we propose to share only necessary model parameters
(location latent matrix, distance&time-related matrices and model weights) except for sensitive user latent matrix.
It takes into account both privacy concerns and the quality of the model, minimizing the shared information
used to build a well-performed POI recommendation model.

4.1.2 Regional Model Aggregation in the Edge Server. Since each mobile device has obtained its own recommenda-
tion model, we then discuss the aggregation of these distributed models. We propose to assign the edge server in
replace of the cloud to aggregate models from users in the same region. The procedure is shown in Algorithm 2.

As shown in Figure 1, base stations forward user requests to the cloud. The edge server is always co-located with
the base stations, thus can sense the existence of users in the service area. The server records users’ IP addresses
within its service coverage in list𝑈 , which would be updated when a user leaves or enters the corresponding
area. Note that the edge server only knows whether users are in its coverage area (usually as large as a district
scale, or even a city scale), instead of the users’ detailed addresses or check-in activities. In the beginning of
model aggregation, the edge server creates a model base and initializes the necessary global model parameters
{𝑌, 𝐷, 𝑆,𝑊 } (line 1). Then to optimize the model base, the edge server interacts with users in 𝑈 , and queries
whether they are willing to participate in the POI recommendation model co-construction and improve their own
model’s quality by the way. When obtaining the availability of users, it starts several rounds of interactions with
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Algorithm 2: Regional model aggregation
Input: users in its covered region𝑈
Output: aggregated model parameters {𝑌, 𝐷, 𝑆,𝑊 }

1 initialize model parameters {𝑌, 𝐷, 𝑆,𝑊 };
2 for 𝑒𝑎𝑐ℎ 𝑟𝑜𝑢𝑛𝑑 𝑡 ∈ [1, 𝑅𝑜𝑢𝑛𝑑𝑠] do
3 𝑈 ′𝑡 ← random subset of available users in𝑈 ;
4 Δ𝑌, Δ𝐷, Δ𝑆, Δ𝑊 = ⊘, ⊘, ⊘, ⊘;
5 for 𝑒𝑎𝑐ℎ 𝑢𝑠𝑒𝑟 𝑢 ∈ 𝑈 ′𝑡 do
6 send {𝑌, 𝐷, 𝑆,𝑊 } to 𝑢 ;
7 user 𝑢 perform local training as shown in Algorithm 1;
8 receive {𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢} from user 𝑢;
9 Δ𝑌 ← Δ𝑌 ∪ 𝑦𝑢, Δ𝐷 ← Δ𝐷 ∪ 𝑑𝑢, Δ𝑆 ← Δ𝑆 ∪ 𝑠𝑢,Δ𝑊 ← Δ𝑊 ∪𝑤𝑢 ;

10 𝑌 ← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (Δ𝑌 ), 𝐷 ← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (Δ𝐷), 𝑆 ← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (Δ𝑆),𝑊 ← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (Δ𝑊 );
11 return {𝑌, 𝐷, 𝑆,𝑊 };

users to make the model convergence (line 2). In each round of interactions, the edge server randomly selects a
subset 𝑈 ′𝑡 from all available users (line 3) and sends the global model parameters to each selected user (line 6).
Each user would perform local model training based on the received global model parameters and local user latent
vector as shown in Algorithm 1 (line 7), and provide feedback with their updated parameters {𝑦𝑢, 𝑑𝑢, 𝑠𝑢,𝑤𝑢}
(line 8). The server collects these distributed updated parameters into the corresponding set {Δ𝑌, Δ𝐷, Δ𝑆 Δ𝑊 }
(line 9). In the end of each round, the server calculates the average value of each parameter set to update the
global model parameter {𝑌, 𝐷, 𝑆,𝑊 } (line 11). At last, the global model parameters are stored in the edge server
(line 13) and continue to be called in the next aggregation.

In this way, the edge server serves as an aggregation point to connect the distributed mobile devices within
the same region. It acquires valuable check-in knowledge from the POI recommendation models of these devices
rather than directly access raw check-in activities. It not only protects user privacy, but also gets rid of the
low-quality models caused by data sparsity on a single device. Although the edge server need to record users’
area information (not an exact GPS location), considering that this geographic area is usually very large, our
scheme can still efficiently protect user privacy. The uppermost challenge in the model aggregation stage is the
heavy communication burden. Even though the dimension of location matrix has been reduced through matrix
factorization method, the amount of data transferred is still large because we need to perform multiple rounds of
interaction. It exacerbates the dependency on network quality, described in Section 1. Faced with this problem,
we propose to perform regional model aggregation in the edge server in replace of global model aggregation
at the cloud. Benefit from the proximity to users, the edge server could aggregate models more efficiently than
the cloud. But since the edge server covers limited users, the recommendation quality decreases to some extent
compared to the global aggregation. Later our experiments have approved that the quality decrease is acceptable
compared to the great decrease in transmission latency.

4.2 Case Studies
In terms of the lack of discussion on advanced recommendation models in most existing POI recommendation
systems, we have investigated two advanced POI recommendation models (PRME-G [15] and Distance2Pre [11])
and customized them into our system as case studies.
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4.2.1 PRME-G. PRME-G resorts to the Metric Embedding method to model personalized check-in sequences
and integrate sequential information, individual preference and spatial influence.
In the local model training module, user 𝑢 constructs three matrices, 𝑋,𝑌, 𝑆 . 𝑋 and 𝑌 are user and location

latent matrices as we described above. 𝑆 is the sequential transition matrix. Each location 𝑙 has one latent vector
𝑠𝑙 in 𝑆 to indicate the transition relationship with other locations. This work calculates the Euclidean distance of
each pair of locations and the Euclidean distance of users and locations, as shown in Equation 1. The matrix 𝐷𝐺

𝑢,𝑙𝑖 ,𝑙 𝑗

defined in Equation 2 integrates the spatial and sequential influence. Δ(𝑙𝑖 , 𝑙 𝑗 ) is the time difference between two
successive check-in activities and 𝜏 is a threshold, and 𝑑𝑙𝑖 ,𝑙 𝑗 is the geographical distance and 𝛼 controls the weight
of 𝐷𝑆

𝑙𝑖 ,𝑙 𝑗
and 𝐷𝑃

𝑙𝑖 ,𝑙 𝑗
. The loss function is shown in Equation 3, where Θ = {𝑋,𝑌, 𝑆}, 𝜎 refers to 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function

and 𝜆 is a parameter controlling the regularization term. These calculation tasks are performed at distributed
mobile devices rather than the centralized cloud.

𝐷𝑆
𝑙𝑖 ,𝑙 𝑗

= ∥𝑠𝑙𝑖 − 𝑠𝑙 𝑗 ∥2, 𝐷𝑃𝑢,𝑙 = ∥𝑥𝑢 − 𝑦𝑙 ∥
2 (1)

𝐷𝐺
𝑢,𝑙𝑖 ,𝑙 𝑗

=

{
𝐷𝑃
𝑢,𝑙 𝑗

𝑖 𝑓 Δ(𝑙𝑖 , 𝑙 𝑗 ) > 𝜏
(1 + 𝑑𝑙𝑖 ,𝑙 𝑗 )0.25 · (𝛼𝐷𝑃𝑢,𝑙 𝑗 + (1 − 𝛼)𝐷

𝑆
𝑙𝑖 ,𝑙 𝑗
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Θ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛Θ
∑
𝑙𝑐 ∈𝐿

∑
𝑙𝑖 ∈𝐿

∑
𝑙 𝑗 ∈𝐿
(−𝑙𝑛𝜎 (𝐷𝐺

𝑢,𝑙𝑐 ,𝑙𝑖
− 𝐷𝐺

𝑢,𝑙𝑐 ,𝑙 𝑗
)) + 𝜆∥Θ∥2 (3)

In regional model aggregation module, according to our above design, to further protect user privacy, we
aggregate location matrix and sequential transition matrix {𝑌, 𝑆} in the edge server except for user matrix 𝑋 .

4.2.2 Distance2Pre. Distance2Pre introduces sequential and spatial factors into the POI recommendation model
by modeling user check-in sequences and distances between successive check-in activities in RNN method.
In local model training module, user 𝑢 calculates the distances between successive activities, and maps each

distance value to a preset distance interval set [0, 𝛿, 2𝛿, · · · , 𝑀𝐷 ]. 𝛿 and𝑀𝐷 refer to the minimal and maximum
intervals, respectively. Each interval 𝑛𝛿 is also mapped to a distance latent vector 𝑑𝑛 ∈ R1×𝑘 . Thus, given the
user’ check-in sequences 𝑆𝑢 , the sequence of mapped distance vectors is obtained, denoted as [𝑑1

𝑙
, 𝑑2
𝑙
· · · ].

This work applies RNN method to model check-in sequences. In Equation 4, 𝑓 refers to the RNN function, and
𝑈 ′,𝑊 ′, 𝑏 are the parameters in RNN function. For each unit in RNN, the inputs are the location and distance
vectors corresponding to the current visited location [𝑦𝑡

𝑙
, 𝑑𝑡
𝑙
], and the previous user latent matrix 𝑥𝑡−1𝑢 , and the

output is the updated user latent matrix 𝑥𝑡𝑢 . 𝑠𝑡 in Equation 5 denotes the spatial preference of all distance intervals,
𝑉𝑠 and 𝑏𝑠 are parameters in 𝑆𝑜 𝑓 𝑡𝑅𝑒𝐿𝑈 function. The spatial and sequential preferences are integrated as shown
in Equation 6. The loss function is shown in Equation 7, and Θ denotes a set of parameters Θ = {𝑌, 𝐷,𝑊 } and 𝑥𝑡

𝑢𝑙 ′

is the negative preference obtained by Bayesian Personalized Ranking [33]. As we described in the above section
4.1, 𝐷 is the set of distance latent vectors, and𝑊 = {𝑈 ′,𝑊 ′, 𝑏,𝑉𝑠 , 𝑏𝑠 ,𝑤𝑑 } is the set of model weights in this work.

𝑥𝑡𝑢 = 𝑓 (𝑈 ′[𝑦𝑡
𝑙
;𝑑𝑡
𝑙
],𝑊 ′𝑥𝑡−1𝑢 , 𝑏) (4)

𝑠𝑡 = 𝑆𝑜 𝑓 𝑡𝑅𝑒𝐿𝑈 (𝑉𝑠𝑥𝑡𝑢 + 𝑏𝑠 ) (5)

𝑥𝑡
𝑢𝑙

= (𝑥𝑡𝑢)𝑇𝑦𝑡+1𝑙
+𝑤𝑑𝑠𝑡 (𝑑𝑡+1𝑝 ) (6)

Θ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛Θ

𝑡= |𝑆𝑢 |∑
𝑡=1
(−𝑙𝑛𝜎 (𝑥𝑡

𝑢𝑙
− 𝑥𝑡

𝑢𝑙 ′)) +
𝜆

2
∥Θ∥2 (7)
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Table 1. Experiment Platform

Configuration Entities
Mobile End Device Edge Server Cloud

CPU 8*Snapdragon 4*Intel(R)Core(TM) 20*Intel(R) Xeon(R)
660@2.2GHZ i5-4590 CPU@3.30GHZ CPU E5-2660 v3@2.60GHz

Memory 4GB 8GB 62GB
System Android 7.1 Windows 10 Ubuntu 16.04

Different with the centralized learning framework, we update Θ at the user local devices based on the loss
value of 𝑆𝑢 , instead of updating Θ at the cloud based on the sum of the loss value of all users.

In regional model aggregation module, the edge server iteratively collects parameter sets Θ = {𝑌, 𝐷,𝑊 } from
users in coverage and performs the aggregation. Different with the centralized learning framework, our proposal
keeps user latent matrix 𝑋 invisible to the third party. Each mobile device trains POI recommendation model
based on the aggregatedΘ received from the edge server in each round of interactions in replace of theΘ obtained
by gradient update in centralized learning.

5 EVALUATION
In this section, we conduct extensive experiments on two real-world datasets and two state-of-the-art POI
recommendation models to answer the following research questions:
RQ1: PREFER strengthens privacy protection by not exposing user check-in data to third parties. Compared

with the centralized recommendation framework that requires all user check-in data to be exposed and uploaded,
will our recommendation quality be affected? Compared with the existing privacy protection recommendation
frameworks, how does PREFER perform in terms of recommendation quality and compatibility with advanced
POI models?
RQ2: PREFER aggregates model parameters in the edge server. How efficient is PREFER compared with the

traditional recommendation framework that trains model at the cloud and the traditional federated method that
aggregates users’ model parameters at the cloud?
In the following, we first describe the settings of our experiments and then evaluate our system framework

based on the above questions.

5.1 Experimental Settings
5.1.1 Experiment Platform. We implement a prototype system to conduct our experiments and measure recom-
mendation efficiency. The experiment platform is shown in Table 1. The battery capacity of the smartphone is
3000mAh. And the software AidLearning [1] is installed on the device to provide a python programming platform
for training recommendation models. Totally one smartphone, one laptop and one remote server are involved to
act as the terminal device, the edge server and the cloud, respectively. When conducting the experiment, both the
smartphone and the laptop are endowed with multi-identities to virtually simulate a group of end devices and
edge servers. By loading different user data for different identities, the virtual group is able to perform different
computation tasks. During the evaluation, we attain and record each virtual entity’s performance metrics, and
calculate the average value as the overall performance of PREFER. As for the network connection, the smartphone
and the laptop are in the same local area network, and the network between the smartphone and the cloud center
is a wide area network. The network bandwidth is 10M/s and 1M/s, respectively.

5.1.2 Datasets. We conduct experiments on two real-world datasets, Foursquare and Gowalla. In the preprocess-
ing, we remove the locations with less than 10 visitors, and users with less than 10 check-in activities by following
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Table 2. Statistics of Data sets

Dataset Region ID User# Location# Record# Sparsity The number of trainable model parameters
PRME-G Distance2Pre

Foursquare

1 1883 2589 138466 0.9716 155400 90557
2 886 2582 64679 0.9717 154980 90340
3 1048 2583 71614 0.9735 155040 90371
4 728 2556 55695 0.9719 153420 89534

Gowalla
1 2065 2550 111289 0.9789 153060 99505
2 484 2080 19686 0.9804 124860 84965
3 837 2327 32990 0.9831 139680 92622

the existing works [11]. The Foursquare dataset is composed of 142105 check-ins made by 1954 users over 2589
positions, and the Gowalla dataset is composed of 130594 check-ins made by 2606 users over 2561 positions.
Their sparsity is 0.9719 and 0.9804. In the training and testing stage, we apply the leave-one-out technique, that is,
leave the latest check-in activity for evaluation and the other activities for model training. Note that each user’s
test location is not contained in his/her train location set [16]. To simulate geographical division, we use K-means
method to divide the whole region into 4 or 3 non-overlapping small regions based on the coordinate data. And
we set that if the frequency of a user’s visit to a region is less than 0.1, the region will not obtain the user’s
characteristics, that is, the user does not participate in the federated learning process of the region, otherwise the
region may obtain the user’s characteristics. The dataset information of each region is presented in Table 2.

5.1.3 Recommendation Models. We reconstruct two advanced POI recommendation models to prove our system
framework’s compatibility. The two models are 1) PRME-G [15]: The method improves the traditional matrix
factorization method by using Markov chain model to model the sequential preference and incorporating spatial
preference. 2) Distance2Pre [11]: The method is also based on matrix factorization and uses RNN model to analyze
user sequential and spatial preference and improve its quality. The programming language is Python. The latent
size 𝑘 of two models is set to 30, and the number of trainable parameters of two models in different regions is
shown in Table 2.

5.1.4 Metrics. To evaluate recommendation quality, We require each algorithm to provide each user with top-𝐾
recommendation locations among all his/her remaining unvisited locations and these locations’ rank scores. The
value of 𝐾 is set to 5, 10, 15 and 20, respectively.

We use two popular metrics, HR and NDCG. Users usually have limited time and attention to view the list of
recommendations, so we should show the top recommendations first, maybe we can promote them more actively.
HR reflects whether the test location is in our recommendation list, and NDCG further reflects the ranking of the
test location in the recommendation list. The definition of HR@K and NDCG@K are given as follows: 1) HR@K:
It refers to Hit Ratio. 𝑟𝑒𝑙𝑖 (𝑢) refers to whether the 𝑖𝑡ℎ item in user 𝑢’s recommendation list hits the test location
(1 for yes and 0 for no). 2) NDCG: It refers to Normalized Discounted Cumulative Gain. It assigns higher scores
to the hits at higher positions of the ranking list. It’s an extension of DCG (Discounted Cumulative Gain) for
recommendation ranking scenario. We give the definition of DCG and NDCG in Equation 8 and 9. IDCG@K
refers to the ideal DCG.

𝐷𝐶𝐺@𝐾 (𝑢) =
𝐾∑
𝑖=1

2𝑟𝑒𝑙𝑖 (𝑢) − 1
𝑙𝑜𝑔2 (𝑖 + 1)

(8)
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Table 3. Comparison with state-of-the-art works

CCL CCMF LLRec PartialFL_cloud NoisedFL_cloud FL_cloud PREFER
Where to cloud cloud end (student)& end end end endtrain cloud (teacher)

target public user

user data user data user data user dataWhat to user domain data + data (cloud) +
train data noised auxiliary private user

domain data data(end)
Where to / / / cloud cloud cloud edgeaggregate

/ / /

noised user location matrix + location matrix +
What to location vector + time&distance time&distance
aggregate matrix noised location -related matrices -related matrices

matrix + model weights + model weights

𝑁𝐷𝐶𝐺@𝐾 =
1
𝑈

𝑈∑
𝑢=1

𝐷𝐶𝐺@𝐾 (𝑢)
𝐼𝐷𝐶𝐺@𝐾 (𝑢) (9)

To evaluate recommendation efficiency, we measure the time taken to complete the whole procedure. In our
proposal, this procedure can be divided into local training in the mobile end device, parameter transmission
and model aggregation in the edge server. The time taken by these three sub-processes is defined as 𝑡𝑡𝑟𝑎𝑖𝑛_𝑒𝑛𝑑 ,
𝑡𝑡𝑟𝑎𝑛𝑠_𝑒𝑒 and 𝑡𝑎𝑔𝑔𝑟𝑒_𝑒𝑑𝑔𝑒 , respectively. The total time is the sum of the above three, notated as 𝑇 . For baselines,
𝑡𝑡𝑟𝑎𝑖𝑛_𝑐𝑙𝑜𝑢𝑑 refers to the time taken to train model at the cloud, and 𝑡𝑡𝑟𝑎𝑛𝑠_𝑒𝑐 refers to the time taken to transmit
user data or parameters to the cloud, 𝑡𝑎𝑔𝑔𝑟𝑒_𝑐𝑙𝑜𝑢𝑑 refers to the time taken to aggregate model parameters in the
cloud. And some baselines need to disturb the interactive information, thus we notate the time required for this
step as 𝑡𝑛𝑜𝑖𝑠𝑒 . Besides we also measure the end device’s resource consumption on memory and energy.

5.1.5 Baselines. We compare our scheme with the following baselines. The major differences among them lie
in four aspects: where to train, what to train, where to aggregate and what to aggregate. We summarize their
differences in Table 3. The mobile device is abbreviated to end.
(1) CCL[11, 15]: It means Centralized Learning at the Cloud. In this framework, the raw user check-in data is

uploaded to the cloud, and then the cloud will execute the recommendation model. It represents the most
ideal recommendation quality without any consideration of user privacy.

(2) CCMF [16]: It means Without Category Confidence-aware Collective Matrix Factorization. In this frame-
work, the raw user data is also uploaded to the cloud, but belongs to two domains, auxiliary domain and
target domain. The auxiliary domain applies geographic differential privacy to disturb the raw data and
share the noised data to target domain for privacy security. And the target domain constructs the confidence
matrix for the noised data to reduce the noise interference. Due to the lack of category information of
location, we are reluctant to apply CCMF without category information. But it has little effect on our
evaluation comparison because the input data of all the frameworks is the same. The evaluation of [16]
is done by randomly selecting 100 locations from the unvisited locations and ranking the test locations
among the 100 locations. In order to unify the evaluation method, we will rank all unvisited locations and
judge whether the test location is in the top-K list.

(3) LLRec[42]: This framework adopts teacher-student training framework. The cloud trains a teacher RNN-
based model with some public data and sends it to the end device to assist the local student model training.
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In this way, end devices keep private user data local without exposure to the cloud and the student model
is simplified based on the teacher model to reduce the heavy computation burden for end devices. The
evaluation of [42] is done by randomly selecting 300 unvisited locations and ranking the test location
among the 300 locations. We also unify the evaluation method in our comparison.

(4) PartialFL_cloud[19]: It means Partial Federated Learning in the cloud. In this framework, users train model
locally and upload only the model’s item matrix to the cloud for aggregation.

(5) NoisedFL_cloud[12]: It means Noised Federated Learning in the cloud. Users also train model locally but
upload both user vector and item matrix to the cloud. It applied differential privacy to protect these vectors.

(6) FL_cloud: It means Federated Learning in the cloud. In this framework, users share itemmatrix, time&distance-
related matrices and model weights to the cloud. It’s our initial version of PREFER which does not take
efficiency into consideration and is not accelerated by edge computing.

LLRec is specific to its own recommendation model, and other data protection ideas can be applied to any
recommendation model based on matrix factorization. Thus, to eliminate the interference of recommendation
model, we will reconstruct PRME-G and Distance2Pre based on these frameworks except for LLRec and compare
the recommendation quality and efficiency under different frameworks.

5.1.6 Parameter Settings. In baseline CCL, the number of training epochs for the two above recommendation
models is 100. In baseline CCMF, we set 70% of the data as the auxiliary domain and the remaining 30% as the
target domain, and set the parameter 𝜖 in geographic differential privacy algorithm as 10. These settings are
referred to [16]. The number of training epochs for recommendation models is also 100. In baseline LLRec, we set
70% of the data as public user data stored in the cloud and refer to the data segmentation preprocessing step in
[42]. And we set the number of teacher training epochs and student training epochs as 10 and 93, respectively. In
the latter three baselines and our proposal PREFER, we randomly select 50% of participants in each interaction
round and the selected participants download the model base from the server and then update the model locally
based on their local data. We set the number of interaction rounds as 100, the number of local training epochs as
2. In this way, we control the possibility of each user check-in data participating in training in each scheme is the
same.

5.2 Results and Discussion
5.2.1 Quality Comparison (RQ1). Firstly we evaluate the top-K recommendation quality of our proposal PREFER
and the above baselines. We set the value of 𝐾 to 5, 10, 15 and 20. Due to the space limitations, we only present the
top-20 results in figures, and the remaining results are given in Appendix A. Figure 4 and Figure 5 demonstrate
the top-20 recommendation quality comparison on two datasets using PRME-G model, and Figure 6 and Figure 7
demonstrate the quality using Distance2Pre model. From these results, we have the following observations:

Comparison to ideal but insecure baseline CCL. Baseline CCL represents the ideal and highest recommendation
quality without discussion of recommendation privacy leakage and efficiency. And our proposed FL_cloud and
PREFER take these factors into consideration and achieve near-optimal and even optimal recommendation quality
in both two metrics. Specifically, the recommendation quality ratio of FL_cloud and CCL is 0.96–1.01 for HR@20
and 0.93–0.95 for NDCG@20 on Foursquare dataset using PRME-G model; 0.98–1.18 for HR@20 and 0.98–1.16
for NDCG@20 on Gowalla dataset using PRME-G model; 0.94–0.99 for HR@20 and 0.98–1.02 for NDCG@20 on
Foursquare dataset using Distance2Pre model; 0.93–0.99 for HR@20 and 0.91–0.98 for NDCG@20 on Gowalla
dataset using Distance2Pre model. And the recommendation quality of PREFER is also very close to CCL. The
quality ratio of PREFER and CCL is above 0.90 no matter what real-world dataset, recommendation model and
metrics are applied. Thus, our proposed FL_cloud and PREFER strengthen user privacy protection with
a little and acceptable sacrifice of recommendation quality.
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Fig. 4. Top-K recommendation quality comparison in different regions on Foursquare dataset using PRME-G model (K = 20)
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Fig. 5. Top-K recommendation quality comparison in different regions on Gowalla dataset using PRME-G model (K = 20)
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Fig. 6. Top-K recommendation quality comparison in different regions on Foursquare dataset using Distance2Pre model (K =
20)

Comparison to existing privacy-preserving recommendation frameworks. Compared to baseline CCMF, our pro-
posed PREFER improves NDCG@20 by 2.43–3.01 times and improves HR@20 by 1.69–2.35 times on Foursquare
dataset using PRME-G. Compared to baseline LLRec, FL_cloud and PREFER still achieve better recommendation
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Fig. 7. Top-K recommendation quality comparison in different regions on Gowalla dataset using Distance2Pre model (K = 20)

quality with an increase of 11%–34% on HR@20 and 17%–43% on NDCG@20 on Foursquare dataset using Dis-
tance2Pre. It’s because FL_cloud and PREFER adopt multi-direction learning mode rather than one-direction
teacher-student learning mode. The remaining results on other datasets and models also prove the significant
quality improvement. In terms of privacy protection, FL_cloud and PREFER need not force any users to expose
their check-in data in the cloud and shows stronger protection. Baseline PartialFL_cloud and NoisedFL_cloud
present lower quality. For PRME-G model, PartialFL_cloud is worse than NoisedFL_cloud, while for Distance2Pre,
PartialFL_cloud outperforms NoisedFL_cloud. It’s because item vectors and user vectors have different importance
on different models. Both of them are greatly lower than our proposal. It proves that the share of time&distance ma-
trices is very important to guarantee recommendation quality. Our proposed FL_cloud and PREFER achieve
the highest recommendation quality among these privacy-preserving recommendation frameworks.
Comparison to FL_cloud. Even that PREFER only aggregates model parameters from users who often visit a

certain region while FL_cloud aggregates all users’ models, PREFER performs almost the same as FL_cloud. The
recommendation quality ratio of PREFER and FL_cloud in each region is always stable between 97% and 99%. It
proves that it’s not very necessary for collecting all users’ model parameters at one point. The preference from
users who do not visit in a certain region is less helpful to improve recommendation quality for users in the
region. Our proposed PREFER achieves almost the same recommendation quality as FL_cloud, but is
more efficient than FL_cloud (as shown in 5.2.2).
Compatibility analysis and comparison of different privacy protection frameworks for recommendation models.

We tried two different recommendation models to evaluate different frameworks, and whatever the model is
adopted, FL_cloud and PREFER always perform better. The quality gap between the ideal CCL and privacy-
preserving baselines fluctuates when using different models, but our proposed FL_cloud and PREFER always
remain higher and stabler quality. It proves that our proposal is more compatible with the mature and
complex recommendation model.
In summary, experimental results on two datasets and two recommendation models demonstrate that our

proposed FL_cloud and PREFER achieve near-optimal recommendation quality to the ideal training methods
and outperform these existing state-of-the-art methods. They are also more practical for the gradually mature
recommendation model and the growing awareness of privacy protection.

5.2.2 Efficiency Comparison (RQ2). Secondly, we focus on the recommendation efficiency of our proposed
PREFER and the above baselines. We measure and compare each step’s time consumption for each framework.
The results are shown in Figure 8 and Figure 9. From these results, we have found the following points:
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Fig. 8. Time consumption comparison in each step on two datasets using PRME-G model
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Fig. 9. Time consumption comparison in each step on two datasets using Distance2Pre model

Comparison to the traditional cloud training framework (baselines CCL and CCMF). Baseline CCL and CCMF
represent the traditional cloud training framework. The bulky calculation of matrix easily takes up lots of memory
and CPU resources in the cloud server and requires a long time to be completed. It’s measured that 𝑡𝑡𝑟𝑎𝑖𝑛_𝑐𝑙𝑜𝑢𝑑
for CCL and CCMF on Foursquare using Distance2Pre reached 4302.12s and 4349.86s, using PRME-G reached
4200.00s and 4243.50s, respectively. For Gowalla, 𝑡𝑡𝑟𝑎𝑖𝑛_𝑐𝑙𝑜𝑢𝑑 for CCL and CCMF using Distance2Pre reached
4800.02s and 4750.11s, using PRME-G reached 4850.86s and 4780.53s, respectively. CCMF need extra time to add
noise when sharing to the target domain. This consumption is relatively small, 41.62s and 30.61s for Foursquare
and Gowalla. And since users only need to upload check-in data to the cloud once, the transmission time is
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negligible. As for PREFER, it utilizes these distributed devices to perform tasks in parallel, and each calculation
task in each device is affordable. The average overall time consumption is reduced by 96.29% and 96.36% for
PRME-G, and 94.80% and 94.91% for Distance2Pre. Thus, PREFER significantly reduces the overall time
consumption of recommendations.

Comparison to the unidirectional teacher(cloud)-student(end) training framework (baseline LLRec). Baseline LLRec
is designed for reducing the computation burden on mobile end devices. We could found that the training time
consumption is the smallest among these methods. But it still needs relatively long time to pre-train a teacher
model in the cloud. The average overall time consumption in PREFER is reduced by 78.66% for PRME-G and
41.37% for Distance2Pre. Thus, PREFER also shows better recommendation efficiency.

Comparison to the existing bidirectional cloud-end federated framework (baselines PartialFL_cloud, NoisedFL_cloud
and FL_cloud). One major difference between them is the aggregation point. These baseline methods require
end devices to upload and aggregate model parameters in the cloud, and we assign edge servers to replace the
cloud. We observed that the local training time 𝑡𝑡𝑟𝑎𝑖𝑛_𝑒𝑛𝑑 is roughly equal among them, the transmission time
𝑡𝑡𝑟𝑎𝑛𝑠_𝑒𝑒 is greatly less than 𝑡𝑡𝑟𝑎𝑛𝑠_𝑒𝑐 owing to the short transmission distance, and the aggregation time 𝑡𝑎𝑔𝑔𝑟𝑒_𝑒𝑑𝑔𝑒
is less than 𝑡𝑎𝑔𝑔𝑟𝑒_𝑐𝑙𝑜𝑢𝑑 because the edge server only aggregates parameters from users in its service region rather
than users in all regions. With the number of rounds of parameter exchange and the total number of users
increase, their gap will further increase. Compared to these baselines, PREFER reduces the average overall time
consumption by 41.77%, 49.8% and 42.6% for PRME-G, and 28.43%, 35.27% and 29.65% for Distance2Pre. Thus,
PREFER shortens the time consumption on parameter transmission and aggregation with the benefit
of the edge server.

We also evaluate the resource consumption of the end devices. For CCL and CCMF, they expose user privacy
to the cloud and the main resource consumption is generated in the cloud. The end device only uploads local
check-in data and receives the feedback. The resource consumption of the device is negligible and not affected
by the adopted model. For LLRec, training the local student model occupies 1.7% of the memory and consumes
3.81mAh. For PartialFL_cloud, NoisedFL_cloud and FL_cloud, they all take up 3% of the memory in PRME-G,
7% of the memory of Distance2Pre. Their energy consumption is 56.5mAh, 75.5mAh, 57.1mAh in PRME-G, and
47.9mAh, 48.9mAh, 57.5mAh in Distance2Pre. The differences are caused by different amounts of transmission
parameters. These baselines have the same amount of calculation for local training which consumes 7.9mAh
in PRME-G and 12.7mAh in Distance2Pre. For PREFER, the memory consumption is the same with FL_cloud
series. The edge device consumes 16.7mAh in PRME-G and 37.7mAh in Distance2Pre. The energy consumption
is saved compared to FL_cloud series owing to the shorter transmission distance. The local training in PREFER
requires 7.3mAh in PRME-G and 12.3mAh in Distance2Pre. End devices in PREFER have a lighter computation
burden compared to FL_cloud series because PREFER considers the locations that users in the same region have
visited rather than all locations. Considering the resource condition of the end device and the benefit of privacy
protection, the resource consumption of PREFER is acceptable.
In summary, the evaluation results show that our proposed PREFER is more efficient than these baseline

methods in completing complex recommendation tasks.

6 CONCLUSION
In this paper, we propose PREFER, an edge-accelerated federated learning framework for POI recommendation.
In the system, in view of the privacy concerns on user locations, users collect and keep their sensitive check-in
activities in their local devices, and then train their local recommendation models. Then, considering high
dependency on network quality and demand for real-time response, users upload multi-dimensional user-
independent model parameters with the edge server in the same region. The edge server aggregates these
parameters to assist to build a more representative recommendation model. Experimental results demonstrate
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that our proposal achieves very similar recommendation quality to the centralized learning framework but greatly
strengthens user privacy protection and improves the recommendation efficiency. And our proposal is more
efficient and compatible with advanced recommendation models than existing state-of-the-art frameworks.
In the future, we will discuss more sophisticated POI recommendation models that take into consideration

social relationship factors. Specifically, we expect to improve the aggregation step by setting different weights to
each user’s model parameters based on their social relationship. We strongly believe that the compatibility with
existing advanced recommendation models should be paid more attention to system design. And we will also
discuss how to perform cross-domain model parameter aggregations among multiple adjacent edge servers when
the edge server gets more close to users and covers few users. It could be a promising direction for optimizing
POI recommendation systems.
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Table 4. Comparison on HR@k using Foursquare dataset and PRME-G model

Foursquare Dataset, PRME-G model
HR@k in HR@k in HR@k in HR@k

Region ID 1 (%) Region ID 2 (%) Region ID 3 (%) Region ID 4 (%)
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

CCL 7.01 9.88 12.16 13.81 7.22 10.61 13.66 15.46 6.11 9.16 11.74 13.65 8.79 12.09 13.74 15.80
CCMF 1.43 2.55 3.72 4.35 1.69 2.82 4.29 5.42 1.15 2.10 3.05 3.91 1.79 2.61 3.85 4.67
LLRec 6.05 8.28 10.83 12.96 6.32 9.82 12.98 14.79 6.01 7.54 10.88 13.07 7.69 10.03 12.77 13.87

PartialFL_cloud 2.28 4.30 5.52 6.43 2.14 5.19 6.55 7.56 1.81 3.34 4.77 5.92 3.43 5.91 7.97 8.93
NoisedFL_cloud 2.97 4.62 6.43 7.86 3.05 5.08 7.11 8.35 2.29 3.82 5.44 7.16 4.26 6.32 8.24 10.44

FL_cloud 6.32 9.19 12.06 13.97 6.55 10.16 12.87 14.79 5.73 8.59 11.93 13.26 7.55 10.85 13.60 15.38
PREFER 6.59 9.56 11.68 13.38 6.66 9.26 12.42 14.56 5.53 8.68 10.78 13.34 7.55 10.85 13.74 15.66

Table 5. Comparison on NDCG@k using Foursquare dataset and PRME-G model

Foursquare Dataset, PRME-G model
NDCG@k in NDCG@k in NDCG@k in NDCG@k in

Region ID 1 (%) Region ID 2 (%) Region ID 3 (%) Region ID 4 (%)
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

CCL 4.82 5.67 6.24 6.64 4.60 5.72 6.55 6.88 4.10 5.11 5.67 6.08 5.99 7.05 7.45 7.88
CCMF 0.93 1.22 1.50 1.66 1.03 1.33 1.68 1.95 0.64 0.92 1.17 1.35 1.21 1.46 1.64 1.86
LLRec 3.74 4.53 5.13 5.62 3.64 4.61 5.53 5.91 4.19 4.66 5.46 6.07 5.24 5.97 6.50 6.79

PartialFL_cloud 1.41 2.04 2.37 2.57 1.29 2.24 2.60 2.83 1.10 1.57 1.94 2.13 2.17 2.87 3.44 3.63
NoisedFL_cloud 1.75 2.27 2.71 3.00 1.80 2.33 2.87 3.24 1.44 1.86 2.23 2.62 2.75 3.37 3.76 4.08

FL_cloud 4.28 5.17 5.94 6.28 4.29 5.37 6.03 6.39 3.72 4.58 5.43 5.74 5.07 6.08 6.86 7.38
PREFER 4.45 5.26 5.90 6.32 4.51 5.30 6.10 6.68 3.71 4.73 5.19 5.61 5.36 6.43 7.05 7.47

Table 6. Comparison on HR@k using Foursquare dataset and Distance2Pre model

Foursquare Dataset, Distance2Pre model
HR@k in HR@k in HR@k in HR@k

Region ID 1 (%) Region ID 2 (%) Region ID 3 (%) Region ID 4 (%)
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

CCL 7.49 11.42 14.45 17.05 8.92 13.32 16.59 18.74 6.97 10.50 14.22 16.60 8.79 14.01 19.09 21.70
CCMF 1.75 3.03 3.77 4.46 2.48 3.95 4.74 5.64 1.72 2.77 3.63 4.39 2.34 3.71 4.67 5.49
LLRec 6.05 8.28 10.83 12.96 6.32 9.82 12.98 14.79 6.01 7.54 10.88 13.07 7.69 10.03 12.77 13.87

PartialFL_cloud 2.60 3.88 5.15 5.74 3.39 4.97 6.43 6.55 2.19 3.24 4.29 4.96 3.16 3.98 5.49 6.46
NoisedFL_cloud 1.01 1.49 2.23 2.71 0.79 1.13 1.69 2.26 0.95 1.43 2.00 2.39 1.65 2.34 3.43 4.12

FL_cloud 7.49 11.15 14.50 16.83 8.35 12.41 15.35 18.28 6.87 10.40 13.36 16.22 8.93 13.74 17.86 20.47
PREFER 7.28 11.42 14.23 16.68 8.13 11.96 15.01 17.95 6.20 10.11 13.26 15.27 8.57 14.01 17.03 19.78

A TOP-K RECOMMENDATION QUALITY COMPARISON
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Table 7. Comparison on NDCG@k using Foursquare dataset and Distance2Pre model

Foursquare Dataset, Distance2Pre model
NDCG@k in NDCG@k in NDCG@k in NDCG@k in

Region ID 1 (%) Region ID 2 (%) Region ID 3 (%) Region ID 4 (%)
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

CCL 4.91 6.25 6.98 7.57 5.67 7.17 7.77 8.34 4.50 5.70 6.42 7.00 5.79 7.23 8.32 8.93
CCMF 1.04 1.39 1.64 1.76 1.64 2.03 2.24 2.42 0.95 1.30 1.51 1.73 1.30 1.68 1.94 2.13
LLRec 3.74 4.53 5.13 5.62 3.64 4.61 5.53 5.91 4.19 4.66 5.46 6.07 5.24 5.97 6.50 6.79

PartialFL_cloud 1.64 2.04 2.38 2.52 2.06 2.55 2.95 2.98 1.54 1.81 2.11 2.25 2.06 2.33 2.65 2.92
NoisedFL_cloud 0.53 0.68 0.82 0.91 0.46 0.54 0.69 0.76 0.55 0.69 0.82 0.91 0.89 1.08 1.29 1.45

FL_cloud 5.12 6.19 7.08 7.63 5.61 6.76 7.54 8.21 4.63 5.64 6.49 7.11 6.03 7.63 8.60 9.10
PREFER 5.00 6.22 6.84 7.38 5.50 6.69 7.37 7.96 4.36 5.31 6.18 6.72 5.75 7.03 8.05 8.64

Table 8. Comparison on HR@k using Gowalla dataset and PRME-G model

Gowalla Dataset, PRME-G model
HR@k in Region ID 1 (%) HR@k in Region ID 2 (%) HR@k in Region ID 3 (%)
5 10 15 20 5 10 15 20 5 10 15 20

CCL 15.01 19.66 22.86 24.94 21.51 26.76 30.82 33.81 17.37 22.29 25.71 28.24
CCMF 3.97 6.15 8.18 9.83 9.30 14.46 17.98 21.49 8.60 13.74 16.97 20.43
LLRec 12.45 15.06 16.56 17.92 14.46 16.94 17.36 17.98 14.22 21.15 22.10 22.70

PartialFL_cloud 6.30 9.30 12.06 13.61 10.33 14.67 19.83 24.38 10.04 14.81 19.00 21.98
NoisedFL_cloud 9.78 13.56 16.61 16.61 15.08 22.11 26.45 29.96 13.74 19.12 22.70 26.28

FL_cloud 14.77 19.27 22.28 24.41 20.87 29.13 33.47 36.57 20.19 26.64 30.11 33.45
PREFER 14.67 20.19 23.58 25.62 21.69 28.93 33.88 38.02 20.55 27.12 30.70 33.21

Table 9. Comparison on NDCG@k using Gowalla dataset and PRME-G model

Gowalla Dataset, PRME-G model
NDCG@k in Region ID 1 (%) NDCG@k in Region ID 2 (%) NDCG@k in Region ID 3 (%)
5 10 15 20 5 10 15 20 5 10 15 20

CCL 10.78 12.12 13.02 13.54 15.38 17.08 18.06 18.86 12.44 13.92 14.83 15.42
CCMF 2.61 3.20 3.73 4.15 6.20 7.80 8.75 9.74 5.48 7.16 7.90 8.53
LLRec 10.21 11.01 11.42 11.75 10.38 11.37 11.43 11.57 11.11 13.21 13.55 13.69

PartialFL_cloud 4.18 5.13 5.87 6.24 7.34 8.77 10.18 11.24 7.08 8.1 9.72 10.45
NoisedFL_cloud 6.67 7.89 8.65 9.16 10.44 12.74 13.83 14.56 9.75 11.48 12.43 13.17

FL_cloud 10.60 12.05 12.74 13.28 15.51 17.74 19.11 19.56 14.35 16.55 17.31 18.01
PREFER 10.20 12.01 12.95 13.45 15.43 17.70 18.90 19.89 14.73 16.78 17.67 18.34
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Table 10. Comparison on HR@k using Gowalla dataset and Distance2Pre model

Gowalla Dataset, Distance2Pre model
HR@k in Region ID 1 (%) HR@k in Region ID 2 (%) HR@k in Region ID 3 (%)
5 10 15 20 5 10 15 20 5 10 15 20

CCL 14.43 19.32 22.76 25.52 23.35 32.64 39.26 43.39 19.95 27.12 31.78 36.08
CCMF 3.92 5.71 6.92 7.89 8.68 12.40 16.32 18.18 8.00 10.75 13.38 15.89
LLRec 12.45 15.06 16.56 17.92 14.46 16.94 17.36 17.98 14.22 21.15 22.10 22.70

PartialFL_cloud 7.51 10.80 12.40 13.41 11.16 17.15 20.87 25.00 11.59 17.32 19.71 22.10
NoisedFL_cloud 6.05 8.62 10.02 11.82 9.50 14.88 17.56 20.04 10.51 14.10 15.65 17.32

FL_cloud 14.00 18.89 22.62 25.23 22.73 31.61 36.98 41.12 19.24 25.69 30.59 33.57
PREFER 13.05 17.46 20.61 23.10 21.69 30.17 35.71 39.05 18.04 25.09 29.63 32.86

Table 11. Comparison on NDCG@k using Gowalla dataset and Distance2Pre model

Gowalla Dataset, Distance2Pre model
NDCG@k in Region ID 1 (%) NDCG@k in Region ID 2 (%) NDCG@k in Region ID 3 (%)
5 10 15 20 5 10 15 20 5 10 15 20

CCL 9.71 11.44 12.27 12.83 15.98 18.84 20.54 21.28 14.44 16.46 17.59 18.69
CCMF 2.52 3.09 3.38 3.61 5.60 6.55 7.63 7.98 5.54 6.45 7.12 7.46
LLRec 10.21 11.01 11.42 11.75 10.38 11.37 11.43 11.57 11.11 13.21 13.55 13.69

PartialFL_cloud 5.00 6.04 6.46 6.71 7.80 9.58 10.63 11.60 8.38 10.15 10.82 11.34
NoisedFL_cloud 4.22 5.05 5.39 5.75 6.47 8.30 8.89 9.56 7.55 8.67 9.05 9.47

FL_cloud 9.66 11.25 12.07 12.61 15.08 18.15 19.31 20.33 13.16 15.44 16.32 17.03
PREFER 11.46 13.35 14.34 15.02 15.59 17.98 19.14 20.06 12.62 14.63 15.73 16.77
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