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The incorporation of the mobile crowd in visual sensing provides a significant opportunity to explore and understand

uncharted physical places. We investigate the gains and losses of the involvement of the crowd wisdom on users’ location

privacy in photo crowdsensing. For the negative effects, we design a novel crowdsensing photo location inference model,

regardless of the robust location protection techniques, by jointly exploiting the visual representation, correlation, and geo-

annotation capabilities extracted from the crowd. Compared with existing retrieval-based and model-based location inference

techniques, our proposal poses more pernicious threats to location privacy by considering the no-reference-photos situations

of crowdsensing. We conduct extensive analyses on the model with four photo datasets and crowdsourcing surveys for

geo-annotation. The results indicate that being in a crowd of photos will, unfortunately, increase one’s risk to be geo-identified,

and highlights that the model can yield a considerable high inference accuracy (48%~70%) and serious privacy exposure (over

80% of users get privacy disclosed) with a small portion of geo-annotated samples. In view of the threats, we further propose

an adaptive grouping-based signing model that hides a user’s track with the camouflage of a crowd of users. Wherein, ring

signature is tailored for crowdsensing to provide indistinguishable while valid identities for every user’s submission. We

theoretically analyze its adjustable privacy protection capability and develop a prototype to evaluate the effectiveness and

performance.
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1 INTRODUCTION
The ubiquitous camera-equipped devices of the mobile crowd have present tremendous opportunity for visually

sensing, collectively monitoring, and comprehensively understanding the physical world [30][11][10]. There is a

great literature devoting to the development and applications of such an emerging paradigm, such as city viewing

and perception [28][42], event sensing [5][13], and daily healthcare [2]. From the aspect of the data requester or

the sensing platform, the exploitation of crowd wisdom during these tasks is definitely beneficial as it essentially

enables the fine-grained data collection in both the spatial and temporal domain [40]. Yet, a successful collection
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depends critically on the active response of physically distributed users (participants), which will expose their

real-time locations for tagging the photo. Location privacy-preserving techniques [35][51][38] are thus widely

studied for motivating the participation of mobile users in crowdsensing tasks.

In fact, even with the raw locations perfectly hidden, one’s location information may still be identified from

the context [4][51][46]. In particular, the visual content of a shared photo is considered to carry certain patterns

for the location at which it is taken [6]. Many research efforts have then been spent on inferring photo shooting

locations based on visual matching techniques applied to a large collection of reference photos with explicit

geo-tags. Specifically, they propose to either adopt a retrieval-based strategy that searches for one’s most similar

photos [14][34] or build classifiers based on the references for mapping photos to discrete locations [9][44][20].

However, we point out that there are usually no reference photos for the cases of crowdsensing as it is launched

to depict uncharted domains in the physical world with uncertain visual views. For example, existing location

inference classifiers (e.g., PlaNet [44]) are only capable to provide city-scale localization with just a few geo-tagged

samples per city, while a crowdsensing task generally focuses on discovering dynamics in a finer-grained context

(e.g., viewing a campus on the 1st day of school), wherein no prior knowledge is available.

In this paper, we move a step further and investigate a new question from the perspective of the users: Given a

crowdsensing task with no reference photos in prior and adequate raw location protection guarantee, is one’s

involvement in such crowd wisdom a gain or a loss for its privacy? On one hand, joining a crowd of users to

execute a crowdsensing task may feel deceivingly safer for a user than making a contribution singly with its

own. However, would the accumulation of visual cues from multiple photos increases the risk for their shooting

locations to be disclosed? On the other hand, can the crowd of users take active measures collaboratively to avoid

possible information leakage?

To analyze the negative effect of the crowd wisdom on privacy, we first propose a more pernicious location

inference model that requires no reference geo-tagged photos. The building block is the extraction of three

types of crowd characteristics: (1) Feature representation knowledge distilled from images of a generalized crowd
(e.g., 1.3M ImageNet dataset) can help to discover visual cues of photo location; (2) Visual correlations of the

crowdsensing photos indicate their co-occurrence possibilities, thus can be used to group photos according to

different geographic patterns; (3) Active annotation capability of latent mobile workers facilitates a straightforward
way to identify a photo’s shooting location with no prior knowledge. Through joint exploitation, the adversary

model can selectively annotate the locations of some representative/seed photos and use them to infer the rest

with a tunable cost.

Using four photo datasets with different domain characteristics and example crowdsourcing surveys, we conduct

extensive assessment for the adversary model in terms of its performance on clustering, representativeness,

annotation accuracy, inference capacity, as well as computation cost. The results show that the crowd-based

representation (i.e., deep features) can facilitate better clustering accuracy and representative selection than using

hand-crafted features. Meanwhile, we observe that mobile crowdsourcing can yield accurate geo-annotation for

our representative photos, but relatively low performance on the annotation of random photos. This indicates

that some photos are geographically inconspicuous for manual identification, while the exploitation of the crowd

correlation can lead to more accurate annotation. Further, we highlight that with only a small portion of annotated

photos, the model can infer photo location with relatively high accuracy, and more importantly, incurring serious

privacy disclosure to the involved users (> 80% users’ privacy are threatened). The annotation and inference for

photos of event sensing are generally more difficult, while generating more clusters and recruiting more crowd

workers can improve the accuracy.

To defend against such threats, we further propose an adaptive grouping-based signing model that can hide a

user’s track under the camouflage of a user group. The basic insight is that users of the same crowdsensing task

share the same privacy concern, thus can form a shield for this crowd by using indistinguishable signatures for

their shared photos. During the design, we integrate the general ring signature process in crowdsensing task
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announcement and registration, and provide adjustable privacy settings for users to balance the risk of privacy

disclosure and the signing cost. We analyze the security property of the defense model with theoretical proof. A

lightweight prototype is also developed to implement the model and evaluate the performance. Experimental

results on the prototype show that the proposal can effectively guarantee users’ various privacy requirements

with acceptable transmission cost (e.g., 80KB for 300 users) and computation overhead (e.g., < 90𝑠 for 300 users),

which have significant improvement in terms of the overhead of a raw ring signature-based method.

The main contributions of this paper are summarized as follows:

• We study the pros and cons of the crowd wisdom for the location privacy of photo crowdsensing. Context

and domain knowledge of the mobile crowd are extracted to support the discovery and protection of user

location information in their shared photos.

• We propose a new line of threat that infers crowdsensing photos’ shooting locations without any reference

photos. The key design novelty lies in exploring a hybrid effort of crowdsourcing, crowd features, and crowd

photo correlation. We examine the feasibility and performance of such threats based on four photo datasets

and real-world annotation surveys. Several remarks and implications on the influence and protection of

the pernicious information leakage risks are presented.

• We propose a defense model as a technical countermeasure for the identified threats based on an adaptive

and indistinguishable signing algorithm. We analyze the privacy-preserving capability theoretically and

show the overhead through the implementation of a prototype.

2 RELATED WORK
Location privacy is a major concern that may hinder users from participating in mobile crowdsensing tasks. In

this section, we review the general location protection research for crowdsensing and the location privacy issues

from sharing photos.

2.1 Location Privacy for Crowdsensing
Plenty of techniques have been proposed to mitigate the potential risks of location leakage in crowdsensing.

As stated in a recent survey [27], cloaking is a widely adopted strategy that protects the precise participant

locations by hiding them under a coarse area through spatial transformation or dummy locations, e.g., [36]. But

such methods are criticized to be sensitive to adversaries’ prior knowledge. More recently, differential privacy is

introduced for implementing privacy-preserving MCS tasks. In[35][18][39], participants’ locations are obfuscated

with differential location privacy during the recruitment stage with the overall traveling distance for fulfilling

the tasks minimized. An optimal location obfuscation policy for crowd coverage maximization is designed in [38]

under certain differential privacy limitations. To address the threats from long-term observation attacks, Niu

et al. [24] harness differential privacy and k-anonymity for effective location perturbation with the impacts to

usability minimized. Further, some dedicated obfuscation techniques are proposed for data recovery in sparse

crowdsensing. For example, Wang et al. [41] focus on reducing the data inference error incurred with differential

location obfuscation. Zhou et al. [51] propose a correlation-preserving location obfuscation scheme that provides

an effective camouflage without degrading data recovery precision.

Based on these efforts, we thus assume that the raw location information of participants can be well protected

and further investigate the tricky threats from the inference category. Namely, the raw visual content and the

location of a photo pose no privacy concerns during its submission in our cases. We focus on deducing the

intrinsic privacy of photos when they form a large group.
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2.2 Photo Location Estimation and Protection
Photo location estimation/inference (a.k.a., reverse geo-tagging, location re-identification) indicates the process

of predicting a photo’s shooting location for intended privacy disclosing or unintended data analysis [6]. This

field is also related to landmark classification and recognition [25][45] in the computer vision community. We

can roughly divide the related methods into two categories: retrieval-based and model-based. On one hand,

retrieval-based methods determine the location of a query photo by searching for the most visually similar photos

in a pre-built geo-tagged dataset [14][34]. Wherein, the matching process can be conducted based on hand-crafted

features (e.g., SIFT, SURF) [14] or Siamese network [34]. On the other hand, model-based methods build classifier

with machine learning techniques to learn the geographical pattern of different locations from geo-tagged photos.

Along this line of work, Fang et al. [9] propose GIANT as an SVM classifier that detects discriminative regions

from the training photos and extracts geo-informative attributes for each city. In Google’s PlaNet [44], the globe

is divided into size adaptable cells with each cell a class for the photos located in it. Then the PlaNet model is

trained based on these photos as a multi-classification problem. In [20], researchers consider integrating the

context-aware features in learning representation to give more weights to regions that positively contribute to

geo-localization. The inference problem is also investigated in other fields, for example, Li et al. [21] design a

Bayes’ theorem-based model to find location implications from the words in tweets.

We point out these methods all need a well-built training dataset to cover the characteristics for all the candidate

locations. As a result, they are merely adequate to infer locations when sufficient reference photos are provided,

which does not match the sensing cases for uncharted targets in crowdsensing. In contrast, we study a different

problem of photo location inference for fine-grained visual sensing with no reference photo in prior.

To avoid photo location from being identified by the visual cues, traditional image/matrix encryption meth-

ods [7][51] can be helpful by allowing access for authorized requesters only. Although effective, the platform

couldn’t properly perform necessary photo preprocessing (e.g., filtering, summarization) or data analysis, given

blind views after encryption. Meanwhile, these methods cannot prevent a curious requester from performing

location estimation on receiving sufficient photos. One may also consider protecting photo geo-privacy by directly

introducing differential privacy, like the pioneering efforts in numerical crowdsensing data collection and aggre-

gation (e.g., weighted average [17][50], truth discovery [32]). Yet, it is hard to apply differential-privacy-based

data publishing methods to the image content as elements in the image matrix share strong correlations [22]. An

effective perturbation will add noise on the views and incur accidental viewing quality degradation, which is

unfavorable in photo crowdsensing applications. Without disturbing the viewing of photos on the platform, Choi

et al. [6] investigate the gain of applying popular photo enhancement on location privacy, while the performance

of misleading the inference model by selectively pruning photos from a collection is studied in [47]. Different

from these proposals, we present a defense model based on indistinguishable signature with the photos unstained,

as well as a theoretical security guarantee. Finally, we believe proper incentive mechanisms [17][48][50] can

help to encourage user participation with relatively looser privacy requirements, while is an orthogonal topic

deserving independent investigation.

3 NO-REFERENCE LOCATION INFERENCE OF CROWDSENSING PHOTOS
In this section, we introduce our design for inferring location from crowdsensing photos. We first define the

problem of no-reference photo location inference. Then we describe the details of a novel adversary model for

geo-identification.

3.1 Problem Definition
Traditional photo geo-identification (a.k.a., image geolocation) techniques require context knowledge that builds

on tremendous reference photos with geo-tags on the targeted locations. A new photo’s location is then predicted
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based on visual similarity estimation between it and the reference photos or geographic classifiers trained on

these references. Yet, from the aspect of crowdsensing, the assumption on the existence of reference photos for

all locations does not always hold due to the spatial and temporal diversity of the physical world. Otherwise, it

breaks the tenet of crowdsensing tasks for visually discovering the physical world on-demand. For example, the

classifier of Google’s PlaNet [44] has only static knowledge of city-scale landmarks. For a crowdsensing task

that attempts to discover visual dynamics within a city, say a block or a campus, usually no prior knowledge is

available for inferring the locations. Therefore, in this work, we focus on a more tricky problem as following:

No-reference photo location inference: Given a collection of crowdsensing photos 𝑝ℎ𝑜𝑖 (𝑖 ∈ [1, 𝑁𝑝ℎ𝑜 ])
with no location tag (obfuscated or encrypted) under the required domain D and time constraint T , we try

to identify the location 𝑙𝑜𝑐𝑖 of photo 𝑝ℎ𝑜𝑖 based merely on the collection without any previously established

reference photo sets.

Compared with the existing geo-identification techniques, such a form of inference can pose a more severe

threat to user privacy as no additional metadata or prior context knowledge is required. For the formulations in

the rest of the paper, we use blackboard bold to denote sets or vectors (e.g., U for user set) and use calligraphy to

represent general strategies or requirements (e.g., G for grouping strategy). We denote the number of a specific

entity 𝑥 as 𝑁𝑥 (e.g., 𝑁𝑝ℎ𝑜 with subscript 𝑝ℎ𝑜 representing photos).

3.2 ‘Spears’ from the crowd
To infer photo locations from the scratch (i.e., with no reference), we first figure out what resources can be our

help.

• Our basic vision is that why don’t we simply ask the crowd to manually identify the shooting locations,

just as asking the crowd for sharing visual depictions of a domain. Following this idea, a straightforward

way is to leverage mobile crowdsourcing to put geographic annotation for each photo.

Manually annotation can be very effective for the geo-identification of images. For example, in a famous online

challenge for identifying a given photo’s shooting location
1
, hackers collect and utilize the captured flight infor-

mation, geometric contexts, historic weather forecasts to successfully discover the hotel where the photographer

stands. However, such a brute-force solution is not feasible in terms of the cases of photo crowdsensing for two

aspects of practical limitation. On one hand, it cannot scale to frequent and ubiquitous crowdsensing that involves

hundreds even thousands of photo collections, as the cost for recruiting workers can be quite large. Meanwhile,

it restrains the capability of automatically searching for vulnerabilities in large collections of photos; On the

other hand, perceptual characteristics of individual photos may not provide sufficient geographical information

for manually identifying their locations. For example, the upper left photo in Fig. 1 presents little clues for its

shooting location as only one corner of a building is captured.

We point out that, apart from mobile crowdsourcing, two other ‘spears’ from the crowd can be further exploited

to overcome the above limitations for implementing an effective attack:

• Visual correlations among the crowd of photos provide opportunities to deduce the spatial co-occurrence of

them. In other words, we believe that the strength of such correlations can implicitly indicate whether two

photos are visuals of the same PoI, as we will evaluate in the experiments of Sec. 4. In this way, although

some photos are geographically inconspicuous, we can infer their locations from their neighbors who are

representative of them.

• Although we are lack visual samples for the interesting locations during crowdsensing, what we do have is

the knowledge distilled from tons of images contributed by a more generalized crowd (e.g., 1.3M ImageNet

dataset [29]). As stated in the deep learning community, the internal structure of the end-to-end networks

1
https://nixintel.info/osint/using-flight-tracking-for-geolocation-quiztime-30th-october-2019/
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Fig. 1. Framework of no-reference location inference adversary model. Photos in the OXlet dataset are used to present an
example task for campus visual sensing. Wherein, on receiving a collection of photos, an adversary (the platform or an
authorized requester) infers the location of each photo and traces a specific user (Bob in this example) according to the
locations of his photos.

trained on high-level classification tasks with labeled images is useful in investigating image synthesis [49].

In our settings, this representational knowledge can help to discover photos’ geographical features and

efficiently measure the correlation.

All these three types of crowd characteristics are taken as pitfalls of the crowd in terms of crowdsensing

photos’ location privacy.

3.3 Adversary Model
We propose to solve the above problem by designing a novel adversary model, whose target situations are typical

photo crowdsensing tasks with honest-but-curious crowdsensing platform or requesters.

Task model: The considered crowdsensing tasks consist of three entities, including requesters that are

interested in some PoIs, users (a.k.a., participants) that volunteer to join a task and share their visual contents,

and crowdsensing platform that regulates users (e.g., recruitment, incentive [17][32][50]), gathers photos, and

performs filtering and selection. Initially, a task can be launched by either a requester in an on-demand manner

(e.g., Waze
2
, Fliermeet [12]) or the platform as a centralized service (e.g., Beautiful China

3
). For the latter cases,

requesters can passively fetch and view the photos from the platform.

A task is specified with a tuple in the form of <domain, region, time, number>: ‘domain’ describes the visual

domain of the PoIs (e.g., event, buildings); ‘region’ and ‘time’ give the spatial and temporal preferences for

collecting photos. The region constraint can be defined with a set of interested PoIs with size 𝑁𝑃𝑜𝐼 ; and ‘number’

further defines the expected amount of photos for each PoI. A volunteered user then responds to the task with its

local photos.

Security assumptions: For the privacy of users’ raw locations, we assume effective location obfuscation (e.g.,

cloaking) will be performed to avoid direct leakage during the sharing. On this basis, the assumed adversaries are

2
https://www.waze.com

3
http://www.quanjingke.com/dest
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honest-but-curious entities who can get access to all the shared photos. This includes the platform that gathers

the photo and requesters that are authorized to view the crowdsensing results. Furthermore, we assume the

adversaries, especially the platform, can deliberately decompose a task in the spatial dimension, namely, into

sub-tasks with fewer target PoIs (e.g., 10), by actively launching fine-grained sub-tasks or passively distinguishing

submissions from different cities (by matching the source IP address with a historic IP-city database
4
). In this way,

the pool of candidate locations for each photo can be narrowed down (with a much smaller 𝑁𝑃𝑜𝐼 ), simplifying

the inference (curious) without impacting photo collection (honest)
5
. Finally, the portrait privacy contained in

the shared photos is not in the scope of this work.

From the aspect of an adversary, an active inference is built on joint exploitation of the above-listed crowd

characteristics (‘spears’). Specifically, given a collection of crowdsensing photos, a four-step location inference

framework is designed as shown in Fig. 1.

(Step 1) Feature representation: In order to effectively analyze photo correlations, we propose to first extract

visual features from them as structural representation. We propose two alternatives for this purpose: low-level

features and deep visual features. On one hand, we compute the descriptive hand-crafted features using SIFT

(the scale-invariant feature transform) for every photo. A group of key points in the photo is detected, each

represented as a 128-dimension feature. By performing K-means clustering on all the detected features, we then

obtain a fix-size vocabulary (codebook) of visual words depicting representative characteristics of the collection

of photos. We set the scale of the vocabulary (i.e., 𝑉 ) to 500 and 2000 to maintain an acceptable efficiency for

the adversary, as it would consume significant time for K-means to handle a large number of clusters. Then a

photo is represented as a sparse histogram that contains the frequency of occurrence of each visual word in its

local features, which is known as the Bag of Visual Word model (BoVW [25]). As |𝑉 | clusters are generated, the
dimension of a photo’s BoVW feature is |𝑉 |.

We point out that the low-level features may ignore perceptual cues for geographical identification. Meanwhile,

it is time-consuming to calculate a vocabulary based on SIFT. Considering that an end-to-end model can discover

complex features that generalize to different prediction contexts, we then introduce an advanced representation

based on the deep embeddings extracted from dedicated DNN models. In particular, we propose to adopt the

internal activations of the MobileNet model [31], which is a popular architecture for image processing in mobile

computing applications. Our representation network retains the 20 shallow layers (i.e., 1 fully convolution layer

and 19 residual bottleneck layers) from the Imagenet-trained MobileNetV2 with width multiplier 𝛼 = 1. Such

a network is very lightweight (8.97MB) in size, which makes it a favorable choice for adversaries, especially a

curious requester. Taking a re-scaled and cropped photo with size 224× 224 as input, the modified network finally

embeds it into a deep feature of 67k-dimension (1280 feature maps with sizes 7 × 7). We unit-normalize both the

BoVW and deep features in the photo dimension, and attain the final representations.

(Step 2) Photo Clustering: In this step, we attempt to cluster photos that share similar visual cues together. In

this way, the visual correlation of photos can be translated into geographic co-occurrence possibilities for further

location inference. For this, we build a similarity graph of photos, where each node represents a photo and each

edge denotes the pairwise similarity between two photos. We propose to use the cosine similarity to measure the

correlation between two photos’ feature vectors, which equals their inner product after normalized to length 1. A

complete graph is then attained for the photo collection. To mitigate the influence of weak correlations between

those irrelevant photos, the graph is refined by reserving only the edges between a node and its top-K nearest

neighbors. Given the expected number of photos 𝑁 𝑖
𝑐𝑜𝑙

for the i-th location/PoI (determined when publishing the

task, see Sec. 5.2.3), we define the threshold for the number of neighbors as 𝐾 =𝑚𝑎𝑥 (𝑁 𝑖
𝑐𝑜𝑙

).
4
Only IP-to-city mapping is available with an accuracy of ~50%, so the IP-based side information is just helpful for coarse-grained task

decomposition, not location inference. Please kindly refer to https://www.iplocation.net/ for more information.

5
An extreme decomposition (e.g., a sub-task with less than 3 PoIs) will impair user participation as their privacy are directly disclosed when

contributing to such sub-tasks, thus is unreasonable to be adopted in practice.
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Photo clustering is then transformed into a graph partition problem, which can be well handled by spectral

clustering [23]. Wherein, we point out that the number of clusters 𝑁𝑐𝑙𝑠 is the crux for tuning the clustering

performance. Basically, since a PoI/location usually presents multi-views that may share weak similarities, we

should set 𝑁𝑐𝑙𝑠 > 𝑁𝑃𝑜𝐼 . For example, the views inside and outside a target building can be very different, thus at

least 2 clusters are needed for accurately clustering the photos of this PoI. A larger 𝑁𝑐𝑙𝑠 means smaller clusters

and a higher probability for photos in a cluster to be visuals from the same location (i.e., higher precision). Yet,

this comes at the cost of more clusters with uncertain geographic locations needed to be identified. To this end,

an adversary shall set the 𝑁𝑐𝑙𝑠 as large as the cost is acceptable, which we will analyze in Step 3.

(Step 3) Selective geo-labelling and infection: We perform location annotation for photos through mobile

crowdsourcing in this step. Based on the above processing, annotation can be simply performed in a cluster-

grained as photos in a cluster are believed to be homogeneous on location. In particular, given a budget 𝑁𝑙𝑖𝑚

on the affordable number of crowdsourcing tasks, we can have 𝑁𝑐𝑙𝑠 · 𝑁𝑟𝑒𝑝 ≤ 𝑁𝑙𝑖𝑚 , where 𝑁𝑟𝑒𝑝 is the number

of representatives in each cluster for manually annotation. Since crowdsourcing results may contain error or

discrepancy, increasing 𝑁𝑟𝑒𝑝 can improve the annotation accuracy for the corresponding cluster, while overall

clustering precision would be degraded with a smaller 𝑁𝑐𝑙𝑠 . We defer an orthogonal strategy for a balanced

inference gain to future work and, w.l.o.g., we set 𝑁𝑟𝑒𝑝 = 1 in the following description
6
.

For each cluster, the representative is selected as the node with the maximum cut within the corresponding

connected component, namely, the photo with the highest sum of visual similarities to the rest photos. The

underlying reason is that a photo with high similarities to the others is deemed to be witnessed at their locations.

After obtaining the locations for the representatives with crowdsourcing, we use them as seeds to geo-annotate

the photos in each cluster the same as its representative. In this way, we attain the possible locations of all the

collected photos.

(Step 4) User tracing: Finally, each user’s photos are mapped to a series of <time, location> records, together

disclosing its historic track during the participation, as shown in the example of Fig. 1. Given the inference results

independently extracted from multiple tasks, an adversary may very likely obtain more records of a user at

different times of a day. Even worse, a powerful attacker could leverage the proposed model to launch deliberate

tasks that covers different locations and push them to a target user, in this way, inferring a fine-grained track for

stalking the victim. As a result, the more PoIs and more tasks one contributes to (i.e., an active user), the larger

privacy leakage it may experience. This will significantly degrade the enthusiasm for photo sharing.

4 EXPERIMENTAL STUDY ON LOCATION INFERENCE ATTACK
We carry out multiple analyses on the proposed adversary model based on several real-world photo datasets. We

study the location inference capability in detail by examining both the performance in each step and the overall

performance in terms of inference accuracy, influence, and latency.

4.1 Datasets
In our analysis, we utilize real-world photos with task-specific visual domains (e.g., campus viewing) to simulate

photo collection through crowdsensing. Especially, explicit PoI labels for photos are required as the geographical

ground truth for performance evaluation. For this, we refer to four publicly available datasets of different scales

(i.e., OXFORD [26], Div150Multi [16], EUFLOOD [1], and CUFED [43]) from the computer vision community

to build our datasets with multiple levels on numbers of photos, users, and PoIs. Photos with PoI labels are

picked out during the pre-processing. Then we manually filter out irrelevant photos from the raw datasets (e.g.,

photos for a cat named Big Ben in Div), and avoid redundant views or aspects that are shared by the same user,

6
Note that we will use the number of manually geo-annotated photos and the number of clusters interchangeably as they have equal value

when 𝑁𝑟𝑒𝑝 = 1.
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considering that this can aggravate its ratio of photos easily being geo-identified. The basic information (domain,

scale) and statistics of the data are summarized in Table. 1.

Table 1. Basic statistics of the adopted datasets.
Datasets Visual Domain Geographic Scale # Photos # Users # PoIs
OXlet Campus: scenery, scene Campus 350 60

*
12

DIV Resort: scenery, scene, objects World wide 7059 493 30

FLOOD Disaster: events, scene City 260 13 12

CUlet Trip: scenery, activities World wide 887 100
*

31

*
User id information is not provided in the raw Oxford and CUFED datasets. We generate 60 and 100 users for them and

randomly assigning the photos to users as their uploaded contributions.

OXlet. The raw OXFORD dataset consists of photos collected from Flickr for particular Oxford landmarks,

wherein the names of the corresponding landmarks are used as the PoI labels. The extracted OXlet dataset is

characterized as a task with small 𝑁𝑝ℎ𝑜 and 𝑁𝑃𝑜𝐼 . Meanwhile, we randomly allocate photos to 60 virtual users to

simulate a low per-user contribution (i.e.,
#𝑝ℎ𝑜𝑡𝑜𝑠

#𝑢𝑠𝑒𝑟𝑠
).

DIV. DIV is constructed based on the Div150Multi 2015 dataset, which is with photos of 30 famous resorts

distributed all over the world. It represents tasks with large 𝑁𝑝ℎ𝑜 and 𝑁𝑃𝑜𝐼 , and medium per-user contribution. In

practice, tourists may be likely to launch tasks for this domain to find interesting places to visit.

FLOOD. EUFLOOD consists of images related to the event of the central European floods in May/June 2013

and has been fetched in July 2017 from Wikimedia. Since PoI labels are not available in the raw dataset, we

perform fixed-width clustering for the photos, as a pre-processing step, based on their GPS locations and consider

those in the same cluster of the same PoI. In particular, we set the clustering width to 200𝑚 (i.e., the coverage of a

PoI is a circle with radius ≤ 100𝑚) and filter out clusters with ≤ 10 photos. We check and name the extracted PoIs

by searching for the centroid locations on the Baidu map. The obtained FLOOD dataset has the largest per-user

contribution with relatively small 𝑁𝑝ℎ𝑜 and 𝑁𝑃𝑜𝐼 .

CUlet. CUFED contains photos of diverse events and is organized as a series of albums. To simulate a specific

visual domain, we select the photos for beach trips from CUFED in our evaluation. The elaborated dataset

characterizes a small 𝑁𝑝ℎ𝑜 but large 𝑁𝑃𝑜𝐼 task context. By manually mapping photos to 100 virtual users, we

realize a medium per-user contribution for CUlet.

4.2 Clustering and representative selection performance
We first study the performance of clustering (Step 2 in the adversary model) by examining whether the photos

grouped into the same cluster correspond to the same PoI (i.e., clustering precision
7
). We choose five different

numbers of clusters (equivalent to the number of geo-labeled photos) for each dataset. The results (averaged on

each dataset) for different feature representation techniques are illustrated in Fig. 2. We can see that clustering

based on the features extracted from dedicated DNN outperforms the BoVW-based clustering by a large margin

(i.e., ≥ 20%) on every dataset. Even provided with a larger word vector and 𝑁𝑐𝑙𝑠 (e.g., 2000-dimension features

and 𝑁𝑐𝑙𝑠 = 40 for FLOOD), the precision of the BoVW-based approach is still lower than 52%. This evaluates our

intention of using deep features for geographical correlation exploitation.

More interestingly, we observe that, for similar visual domains, themodel presents better clustering performance

on the dataset with smaller 𝑁𝑃𝑜𝐼 (~73% on OXlet v.s. ~50% on DIV), then with smaller 𝑁𝑝ℎ𝑜 (~65% on FLOOD v.s.

~60% on CUlet), as more clusters and photos will both add to the clustering hardness. Besides, with similar 𝑁𝑃𝑜𝐼

7
We don’t focus on the performance on recall as it is not relevant to the inference capability (an adversary would expect the labeled

representative to ‘infect’ accurately, instead of widely).
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Fig. 2. The clustering precision of the adversary model (From Left to Right: OXlet, DIV, FLOOD, CUlet).
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Fig. 3. Performance on selecting representative photos from each cluster (From Left to Right: OXlet, DIV, FLOOD, CUlet).

and 𝑁𝑝ℎ𝑜 , photos of landmarks (e.g., OXlet) tend to be more easily clustered than that of events (e.g., FLOOD)

for generally sharing more similarities on visuals. Meanwhile, a larger number of clusters usually brings better

precision as the less similar photos in a cluster is gradually grouped into a new cluster, so a larger number of

clusters is beneficial for an adversary as long as it is affordable for crowdsourcing.

Remark 1: The feature representation model trained with tremendous crowd-contributed images (i.e., Imagenet)
helps to better discover crowdsensing photos’ geo-correlation online than referring to the hand-crafted features.
Then we investigate the performance of picking out representatives/seeds from the generated clusters. In

particular, we measure the performance by introducing a metric named representativeness, which is calculated

as the ratio of photos that belong to the same PoI as the selected representative in each cluster. The results are

depicted in Fig. 3. Again, we observe a large margin on the performance of deep feature-based (> 80% for all

the tested situations) and BoVW-based approaches, which owes to the differences in clustering precision and

similarity measuring. It is also shown that the representativeness doesn’t always increase with the number of

clusters, which indicates that the selection process is not affected by the size of the cluster.

4.3 Mobile crowdsourcing for geo-identification
Given the selected representative photos, we construct mobile crowdsourcing tasks based on the Tencent

Questionnaire and assign them to workers through a social platform to manually infer the photos’ locations.

Since launching crowdsourcing for every tested situation (we have 60 cases) means too much cost, without loss

of generality, we further choose a subset of the representatives elaborated based on the deep features (12, 10, 5,

and 10 for OXlet, DIV, FLOOD, and CUlet) to study the crowdsourcing performance. We also randomly select the

same numbers of photos from the raw selection, and construct four new crowdsourcing tasks for comparison.

As an example, Fig. 4 shows the crowdsourcing-based geo-annotation process for OXlet. During each task, we

recruit 15 workers
8
and describe the context knowledge for the domains of different datasets before starting the

tasks. Workers are paid with monetary reward through red envelope (about 0.6CNY for each task). The average

time needed for each inference question (per photo) of the task on OXlet, DIV, FLOOD, and CUlet are 26s, 18s,

40s, and 32s, respectively.

8
We do this for evaluation purposes. One may in fact request a much smaller number of workers in practice (e.g., 3).
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crowdsouring geo-annotation based on the proposed adversary model and a random strategy, respectively. The red diamond
gives the mean value.

We then examine the accuracy of crowdsourcing annotated locations for the photos by calculating the ratio of

correct labels in the 15 answers. The distributions of the accuracy for different photos in each task are depicted in

Fig. 5. As shown, the manually geo-annotation accuracy on our model selected representatives are much higher

than that of the randomly selected ones, and generally more stable, especially when the geographical context is

clear (i.e., in OXlet, DIV, and CUlet). This observation indicates that the correlations among a crowd of photos

can lead to more accurate geographic annotation, and further validates the design effectiveness of clustering and

representative selection.

Remark 2: Interestingly, the relatively low performance on the annotation of random photos also demonstrates
that brutally annotating all the photos with crowdsourcing cannot yield a favorable accuracy.

Annotating photos in the event domain is relatively harder and takes a longer time. This is because visuals for

an event usually have a weak correlation with the locations where they are captured. In FLOOD, several photos

from different locations may turn out to provide similar views on the disaster. Yet, we can still observe an average

accuracy of ~65% on it. Note that we estimate the annotation accuracy of each worker independently. In practice,

we usually aggregate the answers through majority voting to resolve discrepancies. In this way, the performance

of crowdsourcing can be further improved. Empirically, given that the average annotation accuracy on OXlet,

DIV, and CUlet are around 89%, 95%, and 90% (Fig. 5), the expected accuracy can reach 96%, 99%, and 97% when

an adversary recruits 3 workers. Provided with 5 workers, the annotation accuracy for FLOOD is also expected

to be 94%.
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Fig. 6. Inference accuracy for geo-identifying photos to their GT locations (From Left to Right: OXlet, DIV, FLOOD, CUlet).
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Fig. 7. Ratios of correctly geo-identified photos for each user (From Left to Right: OXlet, DIV, FLOOD, CUlet).

Remark 3: Leveraging the mobile crowd wisdom can yield accurate geo-annotation for representative photos. For
difficult annotation tasks (e.g., visuals of an event), more crowd workers can be helpful.

4.4 Overall inference performance
Next, we evaluate the overall inference capability by investigating the ratio of photos that are correctly geo-

identified (i.e., inference accuracy) and the privacy risks on each user (i.e., the ratio of disclosure). Since we didn’t

perform crowdsourcing for each tested case, we assign an empirical annotation accuracy factor for each dataset

using the statistics above. As shown in Fig. 6, the inference accuracy based on the deep features is much higher

than the other two designs. Specifically, we can observe the best performance on OXlet (i.e., ~70%), which shall

owe to its small 𝑁𝑃𝑜𝐼 and 𝑁𝑝ℎ𝑜 . For larger datasets DIV and CUlet, the inference accuracy can reach ~48% and

~60%, which are still much higher comparing with a random guess (1/𝑁𝑃𝑜𝐼 ≈ 3%). Generally, a crowdsensing

photo has nearly ≥ 50% probability of being correctly geo-identified. Note that the single photo geo-identification

accuracy of state-of-the-art reference-based inference methods [47] is ~20%.

Remark 4: Even only manually annotating a small portion of photos, one can infer a single photo’s location with
a relatively large accuracy using the adversary model.
In Fig. 7, we present the cumulative distributions for the ratios of locations being identified. As shown, for

each test case, over 80% of users get at least one location correctly inferred (see the y-values of the curves for the

ratio of disclosure 0). In DIV and FLOOD, some users only submit less than 2 photos, leading to a small portion of

low disclosure ratio. The influenced ratios increase to > 90% given more labeled photos. We claim that, although

the inference performance seems modest for single photos, the privacy disclosure risk from the perspective of

users is significantly high, even under low per-user contribution (e.g., OXlet, CUlet
9
), indicating serious privacy

threats. Meanwhile, compared with the manual annotation results for photos of a random user (Fig. 5), the threat

to one’s location privacy is obviously higher when jointly considering a collection of photos from many users.

Remark 5: Contributing submissions together with a crowd of photos will, unfortunately, increase one’s risk of
being geo-identified.

9
It is not hard to see that the privacy disclosure threats would be further aggravated if we reduce the number of users in these two datasets.
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Fig. 8. The time consumption of the adversary model (From Left to Right: OXlet, DIV, FLOOD, CUlet).

4.5 Inference Latency
Finally, we test the latency of the proposed location inference model. The experiments are conducted using

Python on a workstation with an Intel Core i7 processor and 64GB RAM. As shown in Fig. 8, the deep feature-

based approach is much faster than the BoVW-based approaches (e.g., ×35 on OXlet, DIV, and CUlet compared

with BoVW1000 and ×7 on FLOOD compared with BoVW500) for that the extraction and representation of the

hand-crafted features are time-consuming. The computation overhead for clustering on deep features is bigger

than that on the hand-crafted ones as the former has a larger dimension. Specifically, a large latency for the

clustering step can be observed on DIV (i.e., ~1250𝑠) because the computation complexity of spectral clustering

significantly increases with an increasing number of nodes (photos). The unusually large loading time for FLOOD

is caused by the extra pre-processing step introduced to group photos geographically and assign them the PoI

labels.

4.6 Discussion
Adversary preferences for small 𝑁𝑃𝑜𝐼 . The curious adversaries would favor tasks with small-but-unsuspicious

numbers of PoIs (i.e., 𝑁𝑃𝑜𝐼 ) to enlarge the inference accuracy by reducing the clustering hardness (according to

the results in Fig. 6 and Fig. 7), and more importantly, to control the crowdsourcing costs with as small budget

𝑁𝑙𝑖𝑚 for that 𝑁𝑃𝑜𝐼 ≤ 𝑁𝑐𝑙𝑠 ≤ 𝑁𝑙𝑖𝑚 . Hence, adversaries are motivated and capable, as we explain in the security

assumptions part, to decompose a large task so that they can realize effective and efficient location inference on

some small sub-tasks. Since this process causes no impact on the crowdsensing results, it will not violate the

honest-but-curious assumption. Such preferences also justify our choices of datasets with generally 10~30 PoIs.

Limitations. The inference accuracy would be degraded with incompetent crowdsourcing workers. Recall that

the adversary model selects some seed photos for manual annotation, and deduces the other photos’ locations

using them. If the recruited workers are unfamiliar with the targeted region or don’t understand the tasks, the

seeds’ location annotation would be inaccurate, resulting in many inference errors for the rest photos. The

annotation errors cannot be totally overcome, one can try to involve sentinels with obvious geographic visuals to

distinguish competent workers.

Generalizing the design.As a new line of threat on crowdsensing privacy, the proposed adversary model shall

be considered as a base model for more deliberate attacks. As such, our intention is not to compare the proposal

with other reference photo-based techniques or to claim who is superior. In fact, based on our design, an adversary

can fine-tune the deep model for geo-pattern extraction or even replace it with more complex architecture (e.g.,

vision transformer) for improved feature representation, thus attaining better inference performance.

Meanwhile, we notice that existing efforts on photo selection (summarization) usually require location tags on

the photos to build a spatial coverage model for a photo subset [52]. To this end, the clustering and selection

steps in our model facilitate an alternative solution for this problem when only visual content is provided.

Implications for the users. Given the above comprehensive analysis on the location inference capability

of a potential adversary, we conclude that characteristics of a crowd (e.g., visual correlation and co-occurrence
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possibilities) play an important role in successful geo-identification. To this end, we give three practical suggestions

for users to securely participate in a crowdsensing task:

• First, a user can attempt to provide a different view for the targeted entity (e.g., keeping a long distance

from the building, taking photos from an innovative aspect) to cut down the overlapping visual clues with

the other photos, thus avoiding being easily localized from his contribution.

• Second, one may consider contributing to a PoI that is being requested for fewer visual descriptions or yet

has fewer contributions to further reduce its correlation with co-located photos.

• Third, one should be aware that sharing photos from multiple sites corresponding to different PoIs may

aggravate the risk of being traced, so is suggested to carefully balance its benefits (e.g., monetary incentive)

and privacy requirements/expectations.

Note that the crux of the above countermeasures is to reduce the possibilities for one’s photo to be identified

in a visually correlated group, but definitely not to refuse to join in a crowd of participants. In fact, as we will

discuss in the following sections, making contributions together with a large number of peer participants can

technically form a natural shield against the inference attacks.

5 DEFENSING AGAINST THE INFERENCE THREATS
As aforementioned, users of a crowd that involves in a visual sensing task can accidentally aggregate the privacy

disclosure risks of each other. Although cautious participation can reduce the risk of being geo-identified, a
technical countermeasure is still in need to provide a theoretical guarantee on user privacy. Hence, in this section,

we move a step forward to investigate the possibility of relieving such a pitfall of the crowd by exploiting the

cooperation utility of the crowd.

5.1 Basic idea: shield of the crowd
We point out the essence of users’ location privacy is the mapping between a specific identity and a series of

geographical sites. Formally, the privacy information can be presented as < 𝑢𝑖 , ((𝑡1, 𝑙𝑜𝑐1), (𝑡2, 𝑙𝑜𝑐2), ...) >. If user
identity is blurred, an adversary cannot link the inferred locations from photos to the corresponding user.

A naive solution based on this idea is by adopting anonymous techniques to hide the real identity, which

is widely used in nowadays mobile apps. However, it is not appropriate for the campaigned photo collection

tasks of crowdsensing. First, a participant (user) of the task may very likely contribute several photos. Given any

context information of his/her routine, one can deduce the link between the anonymity and the true identity,

rendering the leakage of all the other locations s/he had visited. Second, total anonymity is not favored for the

regulation of the task as users and their contributions are not authenticated. As a result, unreliable ingredients

from illegitimate users may easily mix into the collection. Forcing each participant to register a unique key for

authentication purposes will implicitly expose one’s identity to the platform and make the following submissions

unprotected.

We argue that, in fact, the users that participate in a task as a mobile crowd, share the same security concerns on
the centralized platform, thus naturally forming a virtual community that provides camouflage for all members.
Intuitively, users can share data privately in the name of the crowd instead of their own identities. By assuring

that a submission is made by one user of a legitimate crowd but not knowing which specific user s/he is, such a

camouflage facilitates an effective trade-off between the privacy-preserving expectation of the participants and

regulation requirements of the platform. In this way, the crowd members work cooperatively to protect each

other’s identity, which is called the shield of the crowd.

Referring to the field of data security, ring signature [3] appears to be a competent solution that caters to our

intention of attaining identity privacy and unforgeability simultaneously on a group of users. Given a piece of

data signed with ring signatures, a verifier is convinced that the signature is computed using one of the group
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members’ private keys, but the verifier is not able to determine which one. This property can be used to preserve

the signer’s identity from a verifier. In the following, we will extend the bilinear maps-based ring signature [3] to

construct our adaptive defense model.

5.2 Signing photos with ring signature
For the paper to be self-contained, we first briefly describe the security primitives for ring signatures. Then we

describe the signature construction details for our photo crowdsensing scenarios with its privacy protection

capability theoretically analyzed.

5.2.1 Security primitives: Bilinear map. A multiplicative cyclic group is by definition a group of integers that

supports certain multiplicative operations and is generated by a single element. Let𝐺1 and𝐺2 be twomultiplicative

cyclic groups of large prime order 𝑝 , and 𝑔 be a generator of 𝐺1. Then any elements in 𝐺1 can be written as

𝑔𝑥 with some 𝑥 . Based on these settings, a bilinear map is a map 𝑒 : 𝐺1 × 𝐺1 → 𝐺2 that holds the following

properties [37]:

(1) Bilinearity: For all 𝑢, 𝑣 ∈ 𝐺1 and 𝑎, 𝑏 ∈ 𝑍 ∗
𝑝 , 𝑒 (𝑢𝑎, 𝑣𝑏) = 𝑒 (𝑢, 𝑣)𝑎𝑏 . Wherein, 𝑍 ∗

𝑝 represents integers in the

range of (0, 𝑝).
(2) Computability: There exists an efficiently computable algorithm for computing map 𝑒 (𝑢, 𝑣) ∈ 𝐺2.

(3) Non-degeneracy: 𝑒 (𝑔,𝑔) ≠ 1.

These properties are useful for new cryptographic constructions as it provides basic homomorphic operations

for the inputs.

5.2.2 Signature construction and verification. For privacy-preserving, we require each user to register to a task via

the crowdsensing platformwhen deciding to join in. The curious-but-honest platformwill share parameters among

the users of the same task for them to sign indistinguishably. Specifically, making crowdsensing contributions

with ring signature involves four basic steps:

Task Announcement. For each task, the platform chooses generator 𝑔1 and order 𝑝 and obtains a multi-

plicative cyclic group 𝐺1. For transmission efficiency, it also introduces a public map-to-point hash function

𝐻 : {0, 1}∗ → 𝐺1. The platform will publish these global parameters (i.e., (𝑝,𝑔1,𝐺1, 𝐻 )) together with the general

task requirements.

User Registration. For each interested user 𝑢𝑖 , he randomly picks an integer 𝑠𝑘𝑖 ∈ 𝑍𝑝 as his private key and

computes his public key as 𝑝𝑘𝑖 = 𝑔
𝑠𝑘𝑖 ∈ 𝐺1. Then the users upload their public keys to register to the platform.

Wherein, true identity can also be provided together with one’s public key for regulation purposes, such as

reputation management. After receiving the registrations, the platform publishes the public keys (𝑝𝑘1, ..., 𝑝𝑘𝑁𝑢
)

to each participant.

Local Signing. An user 𝑢𝑖 signs for every photo 𝑝ℎ𝑜𝑘𝑖 he shares. For this, 𝑝ℎ𝑜𝑘𝑖 is first transformed to a byte

message𝑚𝑘
𝑖 ∈ {0, 1}∗. Then he randomly chooses 𝑎𝑖 𝑗 ∈ 𝑍 ∗

𝑝 (𝑖 ≠ 𝑗) and computes 𝑠 𝑗 = 𝑔
𝑎𝑖 𝑗
1

to fake all the other

users’ signature elements. At the same time, he computes his own signature element as

𝑠𝑖 = (
𝐻 (𝑚𝑘

𝑖 )∏
𝑗≠𝑖 𝑝𝑘

𝑎𝑖 𝑗
𝑗

)1/𝑠𝑘𝑖 . (1)

The signature for 𝑚𝑘
𝑖 is then constructed as a ring of the signature elements he generates, namely, S

𝑗

𝑖
=

(𝑠1, 𝑠2, ..., 𝑠𝑁𝑢
). Finally, user𝑢𝑖 uploads {𝑝ℎ𝑜𝑖 , S𝑗𝑖 , 𝑡} to the platform, where 𝑡 is the time interval that the submission

falls in. Since elements in S
𝑗

𝑖
all belongs to 𝐺1, they are indistinguishable to the receiver.
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Platform Verifying. On receiving a submission {𝑝ℎ𝑜, S, 𝑡}, the platform first computes 𝛿 = 𝐻 (𝑚𝑝ℎ𝑜 ) and
then verify this submission by checking

𝑒 (𝛿, 𝑔1)
?

=

𝑁𝑢∏
𝑖=1

𝑒 (𝑠𝑖 , 𝑝𝑘𝑖 ), 𝑠𝑖 ∈ S . (2)

If the above equation holds, the platform believes photo 𝑝ℎ𝑜 is signed and submitted by one of the 𝑁𝑢 registered

users. Otherwise, the submission will be considered unreliable and dropped.

5.2.3 Privacy risk analysis. Based on the security primitives, the above construction process inherits the correct-

ness and unforgeability properties of traditional ring signature. Details of the proof can be found in [37]. Here

we analyze the privacy protection property and overhead of the above construction.

Theorem 5.1. For any inference algorithm A, a sensing task with 𝑁𝑢 users, a random user 𝑢𝑖 , and its submission

{𝑝ℎ𝑜, S, 𝑡}, the privacy risk level 𝑃𝑟 [𝑢𝑖 , 𝑙𝑜𝑐∗ |A(𝑝ℎ𝑜, S)] is at most 1 − (1 −
𝑃𝑟A

𝑖𝑛𝑓

𝑁𝑢
)𝑁 𝑡

𝑐𝑜𝑙 , where 𝑃𝑟A
𝑖𝑛𝑓

is the probability
of inferring 𝑝ℎ𝑜’s correct location using A and 𝑁 𝑡

𝑐𝑜𝑙
is the number of co-located photos at time interval 𝑡 for the

inferred location 𝑙𝑜𝑐∗.

Proof. For each element 𝑠 𝑗 ( 𝑗 ∈ [1, 𝑁𝑢]) of S, 𝑠 𝑗 ∈ 𝐺1. We can have that the distribution of S is identical

to that of (𝑔𝑎1
1
, ..., 𝑔

𝑎𝑁𝑢

1
). According to [37], the probability 𝑃𝑟 [𝑢𝑖 |A(𝑝ℎ𝑜, S)] of identifying the owner of 𝑝ℎ𝑜

from its signature S is at most 1/𝑁𝑢 . Note that merely guessing the identity cannot pose an effective threat to

the privacy, an adversary should also infer the correct location of this photo. Given the inference capability

𝑃𝑟 [𝑙𝑜𝑐∗ |𝑝ℎ𝑜] = 𝑃𝑟A
𝑖𝑛𝑓

, we can deduce that the probability of disclosing 𝑢𝑖 ’s location from one submission is

𝑃𝑟A
𝑖𝑛𝑓

𝑁𝑢
.

Crowdsensing tasks usually require retrieving more than one photo for each interested site to attain a compre-

hensive view, namely, the number of co-located photos 𝑁 𝑡
𝑐𝑜𝑙

> 1 for interval 𝑡 . Multiple independent submissions

for one location will aggravate the threat to each user’s privacy. That is, the adversary only has to guess that 𝑢𝑖 is

one of the owners of the many submissions. Therefore, given the number 𝑁 𝑡
𝑐𝑜𝑙

, the probability for locating 𝑢𝑖
equals to inferring the probability for it to make at least one submission for some location 𝑙𝑜𝑐∗, i.e.,

𝑃𝑟 [𝑢𝑖 , 𝑙𝑜𝑐∗ |A(𝑝ℎ𝑜, S)] = 1 − (1 −
𝑃𝑟A

𝑖𝑛𝑓

𝑁𝑢

)𝑁 𝑡
𝑐𝑜𝑙 . (3)

□

Obviously, a larger number of co-located photos will make it easier for an adversary to trace the users. In

practice, the platform is required to choose a reasonable 𝑁 𝑡
𝑐𝑜𝑙

when publishing the task for both collection

efficiency and privacy guarantee. Otherwise, the users can refuse to participate considering the disclosure risk of

their tracks.

Attaining the above privacy gain incurs additional computation and communication costs. From the aspect

of signature generation, although it is conducted on local devices of users distributedly, the time complexity

and transmission overhead are proportional to the amount of participated users. Specifically, as shown in the

local signing step, a valid signature consists of 𝑁𝑢 elements of𝐺1. Let𝐺1 be a 𝑝-order cyclic group. It means that,

even we aggregate different blocks of a photo into the same message when computing 𝐻 (𝑚𝑡
𝑖 ) in Equation (1), a

photo’s ring signature still requires 𝑁𝑢 · |𝑝 |-bits and 𝑁𝑢 multiplication operations. For the centralized platform,

𝑁𝑢 · 𝑁𝑢 mapping operations in Equation (2) should be performed to verify one submission from each user. As an

example, assuming a task with 1000 users and choosing |𝑝 | = 160𝑏𝑖𝑡𝑠 as the general setting does, a signature for

one photo will reach 160𝐾𝑏𝑖𝑡𝑠 . It can be frustrating to both the user and the platform as the size of a signature is

comparable to that of a compressed photo [40]. Since the overhead is proportional to the number of users, it also

significantly limits the scalability of this signing approach.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 142. Publication date: September 2021.



The Crowd Wisdom for Location Privacy of Crowdsensing Photos: Spear or Shield? • 142:17

5.3 Adaptive grouping-based signing model
To further reduce the overhead while still preserving privacy, we exploit a fine-grained and adaptive grouping

strategy, named AGS, for ring signature in this part. According to the analysis in Sec. 5.2.3, when the inference

capability is empirically bounded and the co-located number is set, the parameter 𝑁𝑢 determines both the privacy

protection capability (Equation (3)) and the overhead. Yet, we highlight that the above raw signing approach

provides a K-anonymity [33] protection for every user’s locations (cannot distinguish the identity from a group

of 𝐾 members) with anonymous (privacy) level 𝐾 = 1/𝑃𝑟 [𝑢𝑖 , 𝑙𝑜𝑐∗ |A(𝑝ℎ𝑜, S)] ∝ 𝑁𝑢 , which can be unnecessarily

high for user’s general privacy protection expectation.

In fact, 𝐾 = 5 is generally believed to facilitate sufficient anonymity protection for the corresponding

users [15][19], while for a crowdsensing task of 𝑁𝑢 = 500 (100), the above signature can yield 𝐾 > 120 (25)
with 𝑃𝑟A

𝑖𝑛𝑓
= 0.8 and 𝑁 𝑡

𝑐𝑜𝑙
= 5. Meanwhile, mobile users hold different sensitivity on their privacy information

(some may consider 𝐾 = 2 acceptable [33]), as a result, simply enforcing them to follow the same privacy

protection strategy can be inflexible. These facts give us the opportunity to compromise with the overhead over

the guaranteed privacy level.

Algorithm 1: Privacy-aware user grouping for ring signature

Input: User set U = {𝑢𝑖 |𝑖 ∈ [1, 𝑁𝑢]}, self-defined risk level 𝑘𝑖 for 𝑢𝑖 , number of co-located photos 𝑁 𝑡
𝑐𝑜𝑙

,

empirical location inference probability 𝑃𝑖𝑛𝑓 ;

Output: A set of user group G∗
, the group size for users {𝑁𝑢𝑖

G };
1 Set the initial index of user group 𝑗 = 1 ;

2 Sort the users in U in ascending order by their risk levels 𝑘𝑖 ;
3 while 𝑖 ≤ 𝑁𝑢 do

4 Compute the expected group size 𝑛𝑖 =
𝑃𝑖𝑛𝑓

1−(1−𝑘𝑖 )1/𝑁
𝑡
𝑐𝑜𝑙

for 𝑢𝑖 ;

5 if 𝑛1 > 𝑁𝑢 then
6 Issue an alert that privacy requirements cannot be satisfied ;

7 return ∅, ∅ ;

8 end
9 if 𝑖 + 𝑛𝑖 − 1 ≤ 𝑁𝑢 then
10 Build a new user group G𝑗 ∈ G∗

;

11 Add users 𝑢𝑖 , ..., 𝑢𝑖+𝑛𝑖 to G𝑗 , and set 𝑁
𝑢𝑖
G , ..., 𝑁

𝑢𝑖+𝑛𝑖
G = |G𝑗 | ;

12 Update the group index 𝑗 = 𝑗 + 1, and set the next investigated user id to 𝑖 = 𝑖 + 𝑛𝑖 ;
13 else
14 Add all the left users 𝑢𝑖 , ..., 𝑢𝑁𝑢

to group G𝑗−1, and set 𝑁
𝑢𝑖
G , ..., 𝑁

𝑁𝑢

G = |G𝑗−1 | ;
15 break ;

16 end
17 end
18 return G∗, {𝑁𝑢𝑖

G } ;

To this end, we propose to adaptively divide the crowd of users into small groups to tune dedicated 𝑁
𝑢𝑖
G (the

size of the group that 𝑢𝑖 belongs to) for users according to their differentiated preference on the privacy level.

Formally, a user is allowed to set his preferred risk level 𝑘𝑖 to explicitly require a (1/𝑘𝑖 )-anonymity grouping

when register to the platform. Wherein, a larger 𝑘𝑖 indicates a higher probability of privacy leakage. Without loss
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of generality, here we denote 𝑘𝑖 to be in the range of [0.1, 0.5] (i.e., optional anonymous level 𝐾 ∈ [2, 10]). After
gathering all the preferable risk levels, the platform solves the following overhead minimization problem to find

a globally optimized grouping G∗
for each user:

G∗ = argmin

G

𝑁𝑢∑
𝑖=1

𝑁
𝑢𝑖
G , 𝑠 .𝑡 ., 1 − (1 −

𝑃𝑟A
𝑖𝑛𝑓

𝑁
𝑢𝑖
G

)𝑁 𝑡
𝑐𝑜𝑙 ≤ 𝑘𝑖 , 𝑁𝑢𝑖

G = |G𝑗 | 𝑓 𝑜𝑟 𝑢𝑖 ∈ G𝑗 , G = ∪𝑗G𝑗 .

The solution to this problem is illustrated in Algorithm 1. Specifically, we first sort the users according to their

risk levels in an ascending order (Line 3) to prioritize the grouping of more privacy-sensitive (less overhead-

sensitive) users. In this way, those who need a larger group size will be accommodated first with the minimum

number of group members (Line 11-13). After several rounds of grouping, the remaining users are those with

the lowest privacy expectation and can be easily satisfied by adding them to the last group with the smallest

size (Line 16). We can thus strictly guarantee that none of the users’ privacy requirements are breached. Note

that some users may be grouped into a larger group than he expects. This happens when the number of users

with the same risk level cannot satisfy their own privacy requirements, so some users are endowed with a higher

level to fill the privacy gap. The time complexity for this process is𝑂 (𝑁𝑢) and only has to be performed once per

crowdsensing task.

Finally, the platform publishes the set of groups G to each user. A user 𝑢𝑖 can then construct signatures S𝑖G for

his submissions with the public keys of the members in his group, which has a size of 𝑁
𝑢𝑖
G ≪ 𝑁𝑢 . Accordingly, the

risk level of 𝑢𝑖 becomes 𝑃𝑟 [𝑢𝑖 , 𝑙𝑜𝑐∗ |A(𝑝ℎ𝑜, S𝑖G)] and its overhead is only 𝑁
𝑢𝑖
G /𝑁𝑢 of the raw signing approach.

6 EVALUATION OF THE DEFENSE MODEL
In this section, we first discuss the privacy security property of the adaptive defense model. Then we evaluate

its performance based on a prototype we design. As the overhead of both the raw signing approach and our

AGS model have been theoretically analyzed in Sec. 5, we will just investigate the run time performance of

transmission and computation with experiments on real photo data.

6.1 Security analysis
We propose to mitigate location inference threats on crowdsensing photos by blinding the identities of the

involved users with our AGS model. In this part, we will analyze how the proposal can attain proper location

privacy protection and discuss the security properties under different situations, respectively.

Location privacy. In AGS, each user that participates in a crowdsensing task (defined by user size 𝑁𝑢 and

expected co-located photos 𝑁 𝑡
𝑐𝑜𝑙

) will specify its personalized privacy requirement with privacy risk level 𝑘𝑖 ,

which indicates the largest probability of location disclosure it can accept.

Theorem 6.1. AGS is able to guarantee that the location privacy requirement of each user is not breached during
a task.

Proof. Given a user’s risk level 𝑘𝑖 , the minimum group size 𝑛𝑖 that can guarantee this specified risk level is

calculated with Alg. 1 (Line 5). Following the heuristic strategy in Alg. 1, we group users in the descending order

of their privacy requirements, which gradually adds users needing smaller 𝑛𝑖 into a group until its size satisfies

the requirement of the 1st user in this group. Therefore, for each 𝑢𝑖 , we can have 𝑁
𝑢𝑖
G

≥ 𝑛𝑖 . According to the

identity indistinguishability property of ring signature, the probability of identifying the user from its group

based on the signature in its submission is at most 1/𝑁𝑢𝑖
G
. Then, according to Theorem 5.1, AGS maintains the
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privacy risk for each user with:

𝑃𝑟 [𝑢𝑖 , 𝑙𝑜𝑐∗ |A(𝑝ℎ𝑜, S)] = 1 − (1 −
𝑃𝑟A

𝑖𝑛𝑓

𝑁
𝑢𝑖
G

)𝑁 𝑡
𝑐𝑜𝑙 ≤ 1 − (1 −

𝑃𝑟A
𝑖𝑛𝑓

𝑛𝑖
)𝑁 𝑡

𝑐𝑜𝑙 = 𝑘𝑖 .

For situations where𝑚𝑎𝑥 (𝑛𝑖 ) > 𝑁𝑢 , no grouping solution can be achieved and AGS will generate alerts to

users with 𝑛𝑖 > 𝑁𝑢 as their privacy requirements cannot be satisfied. In these cases, the task will not proceed

unless more users join (𝑁𝑢 ↑) or the corresponding users loose their requirements (𝑛𝑖 ↓). Therefore, we prove that
AGS can guarantee that the location privacy of each user is protected aligned with their own expectation. □

Security with a few user involvement. As proved above, AGS can protect privacy in tasks with small user

size by strictly matching their requirements to proper groups and suspending the task when the matching

problem cannot be resolved. Here we further discuss an extreme scenario with just one user. Note that the user

will experience an actual risk level of 𝑃𝑟A
𝑖𝑛𝑓

for each submission. Namely, the security bound totally depends on

the performance of the inference attacks. Interestingly, as the number of collected photos significantly decreases

in this case, the inference capability 𝑃𝑟A
𝑖𝑛𝑓

would also degrade to that of a random selection (refer to Remark 2). If

such a level of privacy risk (~0.6 for our tested results in Sec. 4.3) is still acceptable, then the task can proceed with

the user’s location privacy intact. In fact, we highlight that the situation of fewer users is unfavorable practically

from the perspective of the task campaigner, which may act as a curious adversary, because this would deteriorate

the quality of crowdsensing. Hence, a reasonable campaigner will proactively recruit sufficient users to maintain

the quality, which indirectly avoid the cases with small user participation.

Security against collusion. Collusion is a form of high level attack that happens under strong assumptions

of the involved entities. In our cases, the privacy guarantee of AGS may be breached when some users collude

with the adversary, wherein the identities of these ‘traitors’ in their submissions are known by the adversary.

Formally, the privacy risk of a honest user would be enlarged to 1 − (1 −
𝑃𝑟A

𝑖𝑛𝑓

𝑁
𝑢𝑖
G −𝜖 )

𝑁 𝑡
𝑐𝑜𝑙 with 𝜖 denoting the number

of ‘traitors’ in its group. However, one should see that the collusion cannot commit an effective privacy disclosure

as long as 𝑁
𝑢𝑖
G − 𝜖 ≥ 𝑛𝑖 . This also specifies the security boundary of AGS (i.e., partially secure against collusion).

6.2 Implementation
We develop a light-weight prototype, named crowdShield, based on Java to implement our adaptive defense

model
10
. We use the Java Pairing Based Cryptography (JPBC) library [8] to obtain the complex cryptographic

properties in Sec. 5.2. In particular, the Type A elliptic curve with the form of 𝑦2 = 𝑥3 + 𝑥 is used as the base to

construct bilinear pairing. By locally running the prototype as an entrance for sharing crowdsensing photos,

a ring signature will be embedded into the submission for anonymity and authentication purpose. Generally,

it allows defining one’s preferred risk level before signing the loaded photo (set to be 0.3 by default), and will

dynamically print some summarizations for the signing process. We emphasize that the prototype currently

performs the setting, signing, and verifying steps all at the user side. However, it can be easily merged into a

crowdsensing platform to support visual sensing and privacy protection distributedly.

6.3 Experimental results

Setup. We empirically set the inference capability to be 𝑃𝑟 𝑖𝑛𝑓 = 0.8, which we believe to be an upper bound

of possible inference techniques according to the results in Sec. 4. We assume that the number of co-located

photos will increase with the number of users that participate in a task. In particular, we set 𝑁 𝑡
𝑐𝑜𝑙

to 𝑁𝑢/20
and (5 + (𝑁𝑢 − 100)/10) when there are < 100 and ≥ 100 participants, respectively. To simulate users with

10
The implementation is available at https://github.com/anonymous2021-0/crowdShield.
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under different amount of users.

various privacy preference, each user’s risk level (i.e., 𝑘𝑖 ) is randomly set to be one of the five discrete values in

{0.1, 0.2, 0.3, 0.4, 0.5}. Without loss of generality, we make the number of users corresponding to different risk

levels to be the same, thus obtaining a uniform distribution. All the experiments are carried out using crowdShield

on the same workstation mentioned above and tested with 10 photos from each dataset (i.e., 30 times).

Privacy protection. Besides the theoretical analysis in Sec. 6.1, we further illustratively show the privacy

protection effectiveness of AGS by comparing it with crowdsensing without protection (None) and the raw blind

signature method (Raw). For this, we introduce a metric named protection strength, which reflects the overall

privacy-preserving performance for the users and is calculated as
1

𝑛

∑𝑁𝑢

𝑖=1

𝑘𝑖−𝑃𝑟 [𝑢𝑖 ,𝑙𝑜𝑐∗ |A (𝑝ℎ𝑜,S) ]
𝑘𝑖

. The corresponding

results are depicted in Fig. 9. Remember that the user-defined privacy risk level 𝑘𝑖 specifies its privacy expectation

(i.e., 1/𝑘𝑖-anonymity), so a positive (negative) strength indicates that the the expectation is satisfied (breached)

11
. As shown, AGS can provide effective protection even when the user size is small (e.g., 20). Raw presents

obviously higher protection strengths, which are far beyond user expectation. As we will analyze later, this

advantage comes at the cost of efficiency. We emphasize that the design goal here is to provide protection within

the self-defined privacy bound with as small overhead. To this end, our flexible grouping strategy (i.e., AGS) that

accommodates efficient privacy protection, instead of simply pursuing higher strength at large communication

and computation cost, is more favorable by the users.

It is worth noting that AGS doesn’t impact the clustering, geo-labelling, or geo-inference accuracy of our

adversary model, as visual contents of photos are intact with AGS. Our AGS model takes effects by cutting off the

link between a photo to its contributor using the crowd camouflage. In this way, even successfully identifying a

photo’s location, an adversary cannot tell it is the location of the corresponding contributor or other 𝑘𝑖 − 1 users.

Transmission overhead. The results on the additional transmission (storage) overhead of the raw signing

approach and the AGS model are depicted in Fig. 10. As expected, AGS shows a large margin on the performance

compared with our raw signing approach. Specifically, we can observe an obvious increase in the overhead of the

raw approach with an increasing number of users (reaching nearly 80KB when 𝑁𝑢 = 300), while the cost for AGS

only increases slightly. This also demonstrates that AGS can scale to large crowdsensing tasks. The performance

on different risk levels is shown in the small window. Generally, the privacy-sensitive ones cost more as their

signatures have more dimensions and larger sizes.

Computation time. Since the defense model involves additional computation steps on both the user device

and platform, we investigate the corresponding generation and verification time, respectively. The results are

shown in Fig. 11 and Fig. 12. The performance curves of Raw and AGS are similar to that of the transmission

11
Interestingly, a zero strength means everyone is endowed with exactly 1/𝑘𝑖 -anonymity as they required.
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Fig. 11. The signature generation time for the
user side with increasing number of users.
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Fig. 12. The submission verification time on the
crowdsensing platform with increasing number
of users.

overhead. For each signature, the generation step is faster than the verification step (around ×4) due to the

adoption of more complex multiplication operations. From the aspect of the task, verification will incur intensive

computation resource consumption as the platform has to deal with all the signed submissions. For the raw

approach, the cost can be as large as 800𝑠 , which is not acceptable even provided with higher computing capability.

Yet, the AGS model can significantly reduce the cost to a relatively reasonable range < 90𝑠 , which further validates

the benefit of adaptive grouping for tuning the performance.

7 CONCLUSION
In this paper, we study the pros and cons of the involvement of the crowd wisdom on location privacy of

photo crowdsensing participants. A pernicious no-reference location inference model is first proposed based

on three types of crowd knowledge, which are considered pitfalls of the crowd. Experiments on real-world

photo datasets and questionnaire-based surveys show that being in a crowd of photos aggravates the risk of a

photo being geo-identified. We also observe that the adversary model can yield accurate inference for even the

geographically inconspicuous photo with only a small annotation cost incurred, while more geo-annotated photos

will usually help to improve the inference capacity. Implications in view of such threats are present to guide

cautious participation. Furthermore, the identity hiding capability of a crowd is investigated by integrating ring

signature in crowdsensing. We introduce an adaptive grouping strategy that allows users to specify their privacy

protection levels and efficiently constructs groups to satisfy their requirements. A prototype is implemented for

the defense model and experimental results on it demonstrate its effectiveness.

In future work, for tuning the performance of the adversary model, one interesting direction is to exploit the

geo-tagged photos on social platforms, together with the budget-limited crowdsourcing annotation, to efficiently

infer the locations of the seed photos. The benefits of calibrating cluster number and per-cluster annotation

number for balancing clustering performance and annotation accuracy are also worth investigating. On the other

hand, from the defense side, we note that the cloud platform may figure out the regions (not the locations) those

active users frequently paying visits to, since their task participation information is known to the cloud. To avoid

user profiling and unexpected leakage through such prior knowledge, differential privacy techniques can be

introduced to obfuscate the binary participation histories.
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